DEEP LEARNING FOR FACES ON ORPHANAGE CHILDREN FACE DETECTION

Yonky Pernando, Eka Lia Febrianti, Ilwan Syafrinal, Yuni Roza, Ummul Fitri Afifah

Abstract


Abstract: l -The field of computer vision is research in development technology to obtain information from images and replicate or imitate human visual processes, so that they can understand the objects around them. Deep learning is a term used to describe a new era in learning that supports computer learning from big data machines. Convolutional Neural Networks (CNN) algorithms have made significant progress in the fields of object detection, image classification, and semantic segmentation. ;Object detection is a technique used to identify the type of object in a given image and the location of the object in the image. The field of computer vision is research in development technology to obtain information from images and replicate or imitate human visual processes, so that computers can know objects around them. Deep learning is the buzzword as a new era in machine learning that trains computers to find patterns from large amounts of data. Convolutional Neural Networks (CNN) algorithms have made significant progress in the fields of object detection, image classification, and semantic segmentation. Object detection is a technique used to identify the type of object in a particular image as well as the location of the object in the image.

 

Keywords: CNN, Computer Vision, Deep Learning, Face Detection;

 

 

Abstrak: 1 Bidang computer vision merupakan penelitian dalam teknologi pembangunan untuk memperoleh informasi dari citra dan mereplikasi atau meniru proses visual manusia, sehingga dapat memahami objek - objek disekelilingnya. Pembelajaran mendalam adalah istilah yang digunakan untuk menggambarkan era baru dalam pembelajaran mesin yang memungkinkan komputer belajar dari sejumlah besar data. [Algoritma Convolutional Neural Networks (CNN) telah membuat kemajuan yang signifikan di bidang deteksi objek, klasifikasi gambar, dan segmentasi semantik. Deteksi objek adalah teknik yang digunakan untuk mengidentifikasi jenis objek dalam citra yang diberikan serta lokasi objek di dalam citra. Bidang computer vision merupakan penelitian dalam teknologi pembangunan untuk memperoleh informasi dari citra dan mereplikasi atau meniru proses visual manusia, sehingga komputer dapat mengetahui objek - objek disekelilingnya. Deep learning adalah kata kunci sebagai era baru dalam machine learning yang melatih komputer dalam menemukan pola dari jumlah besar data. Algoritma Convolutional Neural Networks (CNN) telah membuat kemajuan yang signifikan di bidang deteksi objek, klasifikasi gambar, dan segmentasi semantik. /Deteksi objek adalah teknik yang digunakan untuk mengidentifikasi jenis objek dalam citra tertentu serta lokasi objek di dalam citra.

 

Kata kunci: CNN, Computer Vision, Deep Learning, Deteksi Wajah


Full Text:

PDF

References


N. Zhang et al., “Automatic recognition of oil industry facilities based on deep learning,” Int. Geosci. Remote Sens. Symp., vol. 2018-July, pp. 2519–2522, 2018, doi: 10.1109/IGARSS.2018.8518054.

Y. Pernando, E. L. Febrianti, and A. Andhika, “ANALISA DAN PERANCANGAN SISTEM INFORMASI PASIEN RAWAT INAP (STUDI KASUS: RUMAH BERSALIN AZIMAR ANAS PADANG),” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 5, no. 2, pp. 139–146, 2019.

X. Ruan, D. Ren, X. Zhu, and J. Huang, “Mobile Robot Navigation based on Deep Reinforcement Learning,” Proc. 31st Chinese Control Decis. Conf. CCDC 2019, pp. 6174–6178, 2019, doi: 10.1109/CCDC.2019.8832393.

A. F. M. Gad, Building Android Apps in Python Using Kivy with Android Studio. 2019. doi: 10.1007/978-1-4842-5031-0.

Y. Pernando and A. A. M. Cundana, “Inla Goes To School Augmented Reality Analysis and Design,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 8, no. 1, pp. 95–102, 2021, doi: 10.33330/jurteksi.v8i1.1239.

S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, “A Guide to Convolutional Neural Networks for Computer Vision,” Synth. Lect. Comput. Vis., vol. 8, no. 1, pp. 1–207, 2018, doi: 10.2200/s00822ed1v01y201712cov015.

Y. Pernando and N. Putra, “APPLICATION FAULT POINT UNTUK SISWA YANG BERMASALAH DI SMK IT RISALAH BATAM BERBASIS MOBILE,” J. Digit, vol. 11, no. 1, pp. 9–19, 2021.

X. Jiang, A. Hadid, Y. Pang, E. Granger, and X. Feng, Deep learning in object detection and recognition. 2019. doi: 10.1007/978-981-10-5152-4.

G. Zaccone, Deep Learning with TensorFlow Datasets. 2021. doi: 10.1007/978-1-4842-7341-8_4.

G. Bonaccorso, Machin Learning Algorithm, vol. 49, no. 23–6. 2017. [Online]. Available: www.packtpub.com

A. Almadhor, “Deep Learning Based Face Detection Algorithm for Mobile Applications,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2018-Octob, no. October, pp. 1158–1162, 2019, doi: 10.1109/TENCON.2018.8650093.

Y. Akbulut, A. Şengür, Ü. Budak, and S. Ekici, “Deep learning based face liveness detection in videos,” IDAP 2017 - Int. Artif. Intell. Data Process. Symp., pp. 6–9, 2017, doi: 10.1109/IDAP.2017.8090202.

K. Y. Sun, Y. Pernando, and M. I. Safari, “Perancangan Sistem IoT pada Smart Door Lock Menggunakan Aplikasi BLYNK,” JUTSI (Jurnal Teknol. dan Sist. Informasi), vol. 1, no. 3, pp. 289–296, 2021, doi: 10.33330/jutsi.v1i3.1360.

Y. Pernando and syafrika deni Rizki, “Penerapan Forward Chaining Dalam Menentukan Arah Angin Untuk Nelayan Turun Ke Laut,” vol. 7, no. 2, pp. 279–286, 2017.

A. F. Gad, Practical Computer Vision Applications Using Deep Learning with CNNs. 2018. doi: 10.1007/978-1-4842-4167-7.

M. M. Baharuddin, H. Azis, and T. Hasanuddin, “Analisis Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 3, pp. 269–274, 2019, doi: 10.33096/ilkom.v11i3.489.269-274.

Q. Zhao and S. Zhang, “A face detection method based on corner verifying,” 2011 Int. Conf. Comput. Sci. Serv. Syst. CSSS 2011 - Proc., pp. 2854–2857, 2011, doi: 10.1109/CSSS.2011.5974784.

K. Dang and S. Sharma, “Review and comparison of face detection algorithms,” Proc. 7th Int. Conf. Conflu. 2017 Cloud Comput. Data Sci. Eng., pp. 629–633, 2017, doi: 10.1109/CONFLUENCE.2017.7943228.

A. Şengür, Z. Akhtar, Y. Akbulut, S. Ekici, and Ü. Budak, “Deep Feature Extraction for Face Liveness Detection,” 2018 Int. Conf. Artif. Intell. Data Process. IDAP 2018, pp. 5–8, 2019, doi: 10.1109/IDAP.2018.8620804.

X. Ye, X. Chen, H. Chen, Y. Gu, and Q. Lv, “Deep learning network for face detection,” Int. Conf. Commun. Technol. Proceedings, ICCT, vol. 2016-Febru, pp. 504–509, 2016, doi: 10.1109/ICCT.2015.7399887.

C. McCool, T. Perez, and B. Upcroft, “Mixtures of Lightweight Deep Convolutional Neural Networks: Applied to Agricultural Robotics,” IEEE Robot. Autom. Lett., vol. 2, no. 3, pp. 1344–1351, 2017, doi: 10.1109/LRA.2017.2667039.

K. Azhar, F. Murtaza, M. H. Yousaf, and H. A. Habib, “Computer vision based detection and localization of potholes in asphalt pavement images,” Can. Conf. Electr. Comput. Eng., vol. 2016-Octob, pp. 1–5, 2016, doi: 10.1109/CCECE.2016.7726722.

N. Seenouvong, U. Watchareeruetai, C. Nuthong, K. Khongsomboon, and N. Ohnishi, “A computer vision based vehicle detection and counting system,” 2016 8th Int. Conf. Knowl. Smart Technol. KST 2016, pp. 224–227, 2016, doi: 10.1109/KST.2016.7440510.




DOI: https://doi.org/10.33330/jurteksi.v9i1.1858

Article Metrics

Abstract view : 553 times
PDF - 355 times

Refbacks

  • There are currently no refbacks.


Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) Universitas Royal

Copyright © LPPM UNIVERSITAS ROYAL

 

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.