FAST DETECTION OF SEATBELT DRIVER BASED ON IMAGE CAPTURING

  • Khairul Rohman Universitas Amikom Yogyakarta
  • Theopilus Bayu Sasongko

Abstrak

Abstract: Traffic accidents are one of the biggest contributors to injuries and fatalities worldwide. Victims of traffic accidents range from minor injuries to severe injuries and even death. The severity of many accidents is often due to a lack of discipline and public awareness of traffic rules and safety measures. Car manufacturers have attempted to mitigate the effects of accidents by providing seat belts. However, many people neglect to use them, thinking that nothing will happen while driving. Even with fines imposed by authorities, people can outsmart them by removing their seat belts when officers are not around. To address this issue, a model has been developed to monitor drivers using artificial intelligence and computer vision. The camera captures images, which are then processed by a neural network trained with the YOLOv5 algorithm. The model has an average precision of 89% and a recall of 81%, and can accurately detect whether drivers are wearing seat belts or not. This model is expected to aid in improving driver and passenger safety on the roads. By paying attention to the use of seat belts, the severity of injuries sustained in accidents can be reduced.

           
Keywords: computer vision; neural network; seatbelt detection; yolo

 

 

Abstrak: Kecelakaan lalu lintas merupakan salah satu penyumbang terbesar cedera dan kematian di seluruh dunia. Korban kecelakaan lalu lintas tidak hanya mengalami cedera ringan, tetapi juga cedera berat bahkan kematian. Parahnya banyak kecelakaan yang terjadi dapat disebabkan oleh kurangnya disiplin dan kesadaran masyarakat akan aturan lalu lintas serta tindakan keselamatan. Produsen mobil telah berusaha untuk mengurangi efek kecelakaan dengan menyediakan sabuk pengaman. Sayangnya, masih banyak orang yang mengabaikan penggunaannya, dengan menganggap bahwa tidak akan terjadi apa-apa saat mengemudi. Meskipun ada denda yang diberlakukan oleh pihak berwenang, orang masih dapat melepaskan sabuk pengaman ketika tidak ada petugas di sekitar. Untuk mengatasi masalah ini, sebuah model telah dikembangkan untuk memantau pengemudi menggunakan kecerdasan buatan dan visi komputer. Kamera mengambil gambar yang kemudian diproses oleh jaringan saraf yang dilatih dengan algoritma YOLOv5. Model ini memiliki presisi rata-rata sebesar 89% dan recall sebesar 81%, dan dapat dengan akurat mendeteksi apakah pengemudi menggunakan sabuk pengaman atau tidak. Model ini diharapkan dapat membantu dalam menangani masalah keselamatan pengemudi dan penumpang di jalan raya. Dengan memperhatikan penggunaan sabuk pengaman, dapat mengurangi tingkat keparahan cedera yang terjadi dalam kecelakaan.

 

Kata kunci: computer vision; deteksi sabuk pengaman; neural network; yolo

Referensi

S. Sharma and S. Sebastian, “IoT based car accident detection and notification algorithm for general road accidents,†International Journal of Electrical and Comput-er Engineering, vol. 9, no. 5, pp. 4020–4026, Oct. 2019, doi: 10.11591/ijece.v9i5.pp4020-4026.

J. Karya and T. Sipil, “ANALISIS KECELAKAAN LALU LINTAS (STUDI KASUS-JALAN RAYA UNGARAN-BAWEN),†Hala-man, 2014. [Online]. Available: http://ejournal-s1.undip.ac.id/index.php/jkts

D. Bhupal Naik, G. Sai Lakshmi, V. Ramakrishna Sajja, D. Venka-tesulu, and J. Nageswara Rao, “Driver’s Seat Belt Detection Us-ing CNN,†2021.

A. Giubilini and J. Savulescu, “Vaccination, Risks, and Freedom: The Seat Belt Analogy,†Public Health Ethics, vol. 12, no. 3, pp. 237–249, Nov. 2019, doi: 10.1093/phe/phz014.

M. K. Almohsen, R. K. Alonzi, T. H. Alanazi, S. N. Binsaif, and M. M. Almujally, “Smart Car Seat Belt: Accident Detection and Emergency Services in Smart City Environment,†in 2021 1st Inter-national Conference on Artificial Intelligence and Data Analytics, CAIDA 2021, Institute of Electri-cal and Electronics Engineers Inc., Apr. 2021, pp. 109–114. doi: 10.1109/CAIDA51941.2021.9425108.

Y. Rong, C. Han, C. Hellert, A. Loyal, and E. Kasneci, “Artificial Intelligence Methods in In-Cabin Use Cases: A Survey,†IEEE Intel-ligent Transportation Systems Magazine, vol. 14, no. 3, pp. 132–145, 2022, doi: 10.1109/MITS.2021.3050883.

IEEE Computer Society. and Institute of Electrical and Electronics Engineers., ASAP 2018 : 2018 IEEE 29th International Conference on Application-specific Systems, Architectures and Processors (ASAP) : Milan, Italy, 10-12 July 2018.

C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, and C. W. Lin, “Deep learning on image denoising: An overview,†Neural Networks, vol. 131. Elsevier Ltd, pp. 251–275, Nov. 01, 2020. doi: 10.1016/j.neunet.2020.07.025.

Institute of Electrical and Elec-tronics Engineers, 2018 Interna-tional Interdisciplinary PhD Workshop (IIPhDW) : 9-12 May 2018.

A. Kashevnik, A. Ali, I. Lashkov, and N. Shilov, “Seat Belt Fastness Detection Based on Image Analy-sis from Vehicle In-abin Camera,†2020.

D. Wang, “Intelligent Detection of Vehicle Driving Safety Based on Deep Learning,†Wirel Commun Mob Comput, vol. 2022, 2022, doi: 10.1155/2022/1095524.

C. Dewi, R. C. Chen, Y. T. Liu, X. Jiang, and K. D. Hartomo, “Yolo V4 for Advanced Traffic Sign Recognition with Synthetic Train-ing Data Generated by Various GAN,†IEEE Access, vol. 9, pp. 97228–97242, 2021, doi: 10.1109/ACCESS.2021.3094201.

N. Mamat, M. F. Othman, R. Ab-dulghafor, A. A. Alwan, and Y. Gulzar, “Enhancing Image Anno-tation Technique of Fruit Classifi-cation Using a Deep Learning Ap-proach,†Sustainability (Switzer-land), vol. 15, no. 2, Jan. 2023, doi: 10.3390/su15020901.

F. Tian, W. Ma, and F. Tan, “Im-proved YOLOv5 model for rice stem and leaf lesion image annota-tion.†[Online]. Available: https://ssrn.com/abstract=4212342

R. Dulal et al., “Automatic Cattle Identification using YOLOv5 and Mosaic Augmentation: A Compar-ative Analysis,†2022.

G. Yang et al., “Face Mask Recognition System with YOLOV5 Based on Image Recog-nition,†in 2020 IEEE 6th Interna-tional Conference on Computer and Communications, ICCC 2020, Institute of Electrical and Elec-tronics Engineers Inc., Dec. 2020, pp. 1398–1404. doi: 10.1109/ICCC51575.2020.9345042.

G. Guo and Z. Zhang, “Road damage detection algorithm for improved YOLOv5,†Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-19674-8.

Z. P. Xu, Y. Zhang, J. Cheng, and G. Ge, “Safety Helmet Wearing Detection Based on YOLOv5 of Attention Mechanism,†in Journal of Physics: Conference Series, IOP Publishing Ltd, Mar. 2022. doi: 10.1088/1742-6596/2213/1/012038.

Institute of Electrical and Elec-tronics Engineers. Bangladesh Section, IEEE Region 10, and In-stitute of Electrical and Electronics Engineers, 2020 IEEE Region 10 Symposium (TENSYMP) : 5-7 June 2020, Dhaka, Bangladesh.

Diterbitkan
2023-06-27
Bagian
Articles