FORECASTING THE JAKARTA COMPOSITE INDEX USING LSTM BASED ON INDONESIAN MARKET DATA

  • Reni Yunita Universitas Royal
  • Egi Dio Bagus Sudewo Universitas Royal
  • Azyana Alda Sirait Universitas Royal
Keywords: forecasting, JCI, long short term memory

Abstract

Abstract: The capital market plays an important role in describing the economic conditions of a country, and the IHSG is used as the main indicator to observe the movement of all stocks on the Indonesia Stock Exchange. Because stock data is volatile and non-linear, the forecasting process becomes challenging, requiring methods that can capture historical patterns more accurately. This study aims to predict IHSG movements using the Long Short-Term Memory (LSTM) model to generate stable short-term predictions. Historical IHSG data was used to train the model, and accuracy was evaluated using Mean Squared Error (MSE). The results show that the model obtained an MSE 6784.0207, RMSE 82.3652 and MAPE 0.88%, indicating a relatively low prediction error rate. The visualization shows that the model's predictions are very close to the actual data, and the 60-day forecasting results show a potential increase in the IHSG of 1.05%. Thus, the LSTM model is capable of providing fairly accurate IHSG predictions and can be a useful tool for investors in analyzing short-term market movements.

Keywords: forecasting; JCI; long short term memory

 

Abstrak: Pasar modal memiliki peran penting dalam menggambarkan kondisi ekonomi suatu negara, dan IHSG digunakan sebagai indikator utama untuk melihat pergerakan seluruh saham di Bursa Efek Indonesia. Karena data saham bersifat fluktuatif dan tidak linear, proses peramalan menjadi tantangan, sehingga dibutuhkan metode yang mampu menangkap pola historis secara lebih akurat. Penelitian ini bertujuan memprediksi pergerakan IHSG menggunakan model Long Short-Term Memory (LSTM) untuk menghasilkan prediksi jangka pendek yang stabil. Data historis IHSG digunakan untuk melatih model, kemudian akurasi dievaluasi menggunakan Mean Squared Error (MSE). Hasil penelitian menunjukkan bahwa model memperoleh nilai MSE 6784.0207, RMSE 82.3652 dan MAPE 0.88% yang menandakan tingkat kesalahan prediksi relatif rendah. Visualisasi menunjukkan bahwa prediksi model sangat mendekati data aktual, dan hasil forecasting 60 hari ke depan memperlihatkan potensi kenaikan IHSG sebesar 1,05%. Dengan demikian, model LSTM mampu memberikan prediksi IHSG yang cukup akurat dan dapat menjadi alat bantu bagi investor dalam menganalisis pergerakan pasar jangka pendek.

Kata kunci: peramalan; JCI; memori jangka pendek

References

H. Sasono, I. Moridu, P. Irianto, C. Hahmudi, S. Yuliati, and L. Dwi Resihono, “Composite Stock Price Index (Ihsg) Analysis, Educational Administration: Theory And Practice,” vol. 2024, no. 5, pp. 11596–11602, 2024, doi: 10.53555/kuey.v30i5.4980.

F. D. Sumaryana, N. Nugraha, M. Sari, and T. Heryawan, “The Influence of Macroeconomic Fundamentals and Investor Sentiment on the Indonesian Stock Exchange,” 2024, pp. 7–13. doi: 10.2991/978-94-6463-443-3_2.

G. F. Simanjuntak, “Forecasting Weekly Stock Price of Jakarta Stock Exchange Composite Index (IHSG) Using ARIMA Box-Jenkins Method,” 2025.

Y. Zhao, “A Novel Stock Index Intelligent Prediction Algorithm Based on Attention-Guided Deep Neural Network,” Wirel Commun Mob Comput, vol. 2021, 2021, doi: 10.1155/2021/6210627.

A. K. Novandi and Muh. F. Falah, “The Influence of Inflation, Interest Rates, and Exchange Rates on the Composite Stock Price Index (IHSG) in Indonesia,” ASIAN Economic and Business Development, vol. 6, no. 1, pp. 43–48, Aug. 2023, doi: 10.54204/AEBD/Vol6No1August2023006.

D. Gunawan and W. Astika, “The Autoregressive Integrated Moving Average (ARIMA) Model for Predicting Jakarta Composite Index,” Jurnal Informatika Ekonomi Bisnis, Feb. 2022, doi: 10.37034/infeb.v4i1.114.

J. Qiu, B. Wang, and C. Zhou, “Forecasting stock prices with long-short term memory neural network based on attention mechanism,” PLoS One, vol. 15, no. 1, Jan. 2020, doi: 10.1371/journal.pone.0227222.

P. Matematika et al., “Forecating Composite Stock Price Index (CSPI) Using Long Short Term Memory (LSTM) Intan Elprida SIlaban,” 2022. [Online]. Available: www.finance.yahoo.com.

M. Nabipour, P. Nayyeri, H. Jabani, A. Mosavi, E. Salwana, and S. Shahab, “Deep learning for stock market prediction,” Entropy, vol. 22, no. 8, Aug. 2020, doi: 10.3390/E22080840.

I. Gede et al., “Predictive Time-Series Modelling of Rice Price Fluctuations in East Nusa Tenggara Using ARIMAX: A Data Driven Case Study Regional Agricultural Market Dynamics,” 2024. [Online]. Available: https://powertechjournal.com

D. Satria, “Predicting Banking Stock Prices Using Rnn, Lstm, And Gru Approach,” Applied Computer Science, vol. 19, no. 1, pp. 82–94, 2023, doi: 10.35784/acs-2023-06.

J. Long, Z. Chen, W. He, T. Wu, and J. Ren, “An integrated framework of deep learning and knowledge graph for prediction of stock price trend: An application in Chinese stock exchange market,” Applied Soft Computing Journal, vol. 91, Jun. 2020, doi: 10.1016/j.asoc.2020.106205.

A. Kelotra and P. Pandey, “Stock Market Prediction Using Optimized Deep-ConvLSTM Model,” Big Data, vol. 8, no. 1, pp. 5–24, Feb. 2020, doi: 10.1089/big.2018.0143.

I. G. T. Suryawan, I. K. N. Putra, P. M. Meliana, and I. G. I. Sudipa, “Performance Comparison of ARIMA, LSTM, and Prophet Methods in Sales Forecasting,” sinkron, vol. 8, no. 4, pp. 2410–2421, Oct. 2024, doi: 10.33395/sinkron.v8i4.14057.

F. Santosa, E. Oktafanda, H. Setiawan, and A. Latif, “Advanced Long Short-Term Memory (LSTM) Models for Forecasting Indonesian Stock Prices,” Jurnal Galaksi, vol. 1, no. 3, pp. 198–208, Dec. 2024, doi: 10.70103/galaksi.v1i3.42.

A. Amalia, I. Hayati, A. Afandi, A. S. Lubis, and J. L. Marpaung, “Comparative Forecasting of Indonesian Stock Prices Using ARIMA and Support Vector Regression: A Statistical Learning Approach,” Mathematical Modelling of Engineering Problems, vol. 12, no. 7, pp. 2307–2315, 2025, doi: 10.18280/mmep.120711.

M. Diqi and I. W. Ordiyasa, “Enhancing Stock Price Prediction in the Indonesian Market: A Concave LSTM Approach with Runrelu,” Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 18, no. 3, pp. 69–77, Sep. 2024, doi: 10.14313/jamris/3-2024/24.

W. Lu, J. Li, J. Wang, and S. Wu, “A Novel Model for Stock Closing Price Prediction Using Cnn-Attention-Gru-Attention,” Econ Comput Econ Cybern Stud Res, vol. 56, no. 3, pp. 251–264, 2022, doi: 10.24818/18423264/56.3.22.16.

Published
2025-12-20
How to Cite
Yunita, R., Egi Dio Bagus Sudewo, & Azyana Alda Sirait. (2025). FORECASTING THE JAKARTA COMPOSITE INDEX USING LSTM BASED ON INDONESIAN MARKET DATA. JURTEKSI (jurnal Teknologi Dan Sistem Informasi), 12(1), 89-96. https://doi.org/10.33330/jurteksi.v12i1.4310