ANALISIS PERAMALAN PERMINTAAN PADA GEPREK BENSU MENGGUNAKAN METODE TIME SERIES

Ellin Asynari, Dede Wahyudi, Qurrotul Aeni

Abstract


Abstract: Demand forecasting for ayam geprek at Geprek Bensu is needed to make chicken inventory decisions to reduce inventory that often out of stock. This study uses  time series single  moving average (SMA) and single exponential smoothing (SES) method to make geprek chicken requests in Geprek Bensu. This study sampled sales reports in October 2018 - September 2019. Results obtained from recognition using Mean absolute deviation (MAD = 3,116), Absolute Percentage Error indicate (MAPE = 9%), and mean squared error (MSE = 2,762) shows that Single Moving Average produces more accurate results  compared to the Single exponential smoothing method.


Keywords: Demand Forecasting; Single moving average; Single exponential smoothing; Time Series.

 

 

Abstrak: Peramalan permintaan ayam geprek pada Geprek Bensu sangat dibutuhkan untuk pengambilan keputusan penyediaan stok ayam dan mengurangi out of stock yang sering terjadi. Penelitian menggunakan metode seri waktu Single moving average (SMA) dan Single exponential smoothing (SES) untuk membuat peramalan permintaan ayam geprek di Geprek Bensu. Penelitian ini mengambil sample laporan penjualan pada bulan Oktober 2018 – September 2019. Hasil yang di dapatkan dari perbandingan akurasi menggunakan Mean absolute deviation (MAD = 3,116), Absolute Percentage Error indicate (MAPE = 9%), dan mean squared error (MSE = 2,762) menunjukkan bahwa Single Moving Average memiliki hasil yang lebih akurat jika dibandingkan dengan metode Single exponential smoothing.

 

Kata kunci: Peramalan permintaan; Pemulusan eksponensial; Rata-rata bergerak; Seri waktu.


Full Text:

PDF

References


C. Deb, F. Zhang, J. Yang, S. E. Lee, and K. W. Shah, “A review on time series forecasting techniques for building energy consumption,” Renew. Sustain. Energy Rev., vol. 74, no. July 2016, pp. 902–924, 2017. http://dx.doi.org/10.1016/j.rser.2017.02.085.

M. C. Hidayatullah and G. Yudoko, “Demand Forecasting Analysis Using Time Series Methods,” pp. 375–381, 2016. http://seminar.uny.ac.id/icebess2016/sites/seminar.uny.ac.id.icebess2016/files/Proceeding of ICEBESS 2016 Rev02.pdf.

A. O. Akyuz, M. Uysal, B. A. Bulbul, and M. O. Uysal, “Ensemble approach for time series analysis in demand forecasting: Ensemble learning,” Proc. - 2017 IEEE Int. Conf. Innov. Intell. Syst. Appl. INISTA 2017, pp. 7–12, 2017. https://ieeexplore.ieee.org/document/8001123.

M. Matsumoto and A. Ikeda, “Examination of demand forecasting by time series analysis for auto parts remanufacturing,” J. Remanufacturing, vol. 5, no. 1, 2015. https://repository.usd.ac.id/17756/2/135314066_full.pdf.

A. I. Laksmana, “Perbandingan Metode Single Moving Average dan Exponential Smoothing dalam pengembangan sistem peramalan mobil baru,” Skripsi, vol. 4, pp. 9–15, 2017. https://repository.usd.ac.id/17756/2/135314066_full.pdf.

H. D. E. Sinaga and N. Irawati, “Perbandingan Double Moving Average Dengan Double Exponential Smoothing Pada Peramalan,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. IV, no. 2, pp. 197–204, 2018. https://doi.org/10.33330/jurteksi.v4i2.60.

S. Chopra and P. Meindl, Supply Chain Management: Global Edition. 2016. http://www.pearsoned.co.uk/bookshop/detail.asp?item=100000000445856.

T. M. Choi and S. Ren, Intelligent demand forecasting supported risk management systems for fast fashion inventory management, no. 2015. Elsevier Ltd, 2016. http://dx.doi.org/10.1016/B978-0-08-100571-2.00013-0.

K. G. Boroojeni, M. H. Amini, S. Bahrami, S. S. Iyengar, A. I. Sarwat, and O. Karabasoglu, “A novel multi-time-scale modeling for electric power demand forecasting: From short-term to medium-term horizon,” Electr. Power Syst. Res., vol. 142, pp. 58–73, 2017. http://dx.doi.org/10.1016/j.epsr.2016.08.031.

N. P. Innes, “Time Series Analysis : Forecasting Treasury Bill Interest Rates,” 2019. https://digitalcommons.murraystate.edu/honorstheses/26/.

P. J. Brokwell and R. A. Davis, “Introduction to Time Series and Forecasting - Peter J. Brockwell, Richard A. Davis - Google Books,” 1996. [Online]. Available: https://books.google.co.id/books. [Accessed: 09-Oct-2019].

H. Khosroshahi, S. M.Moattar, and M. R. Marjani, “The bullwhip effect in a 3-stage supply chain considering multiple retailers using a moving average method for demand forecasting,” Appl. Math. Model., vol. 40, no. 21–22, pp. 8934–8951, 2016. http://dx.doi.org/10.1016/j.apm.2016.05.033.

S. Fachrurrazi, “Menggunakan Metode Single Exponential Smoothing Pada Toko Obat Bintang Geurugok,” Techsi, vol. Vol. 6 No., pp. 19–30, 2015. https://doi.org/10.29103/techsi.v7i1.178.




DOI: https://doi.org/10.33330/jurteksi.v%25vi%25i.424

Article Metrics

Abstract view : 48 times
PDF - 49 times

Refbacks

  • There are currently no refbacks.