DESIGN AND CONSTRUCTION OF SOIL MOISTURE DETECTION TOOL USING ANDROID BASED DECISION TREE ALGORITHM

  • Mirwan Aziz Ritonga Universitas Potensi Utama
  • Lili Tanti Universitas Potensi Utama
Keywords: Soil Moisture Detection, Decision Tree Algorithm, Android, Sensor, Agriculture.

Abstract

Abstract: Soil moisture is an important factor in determining the watering needs of plants for optimal growth. Therefore, accurate monitoring of soil moisture is necessary. This research aims to design and build a soil moisture detection tool based on the Decision Tree algorithm with the support of the YL-69 sensor for humidity measurement and the DHT11 sensor for temperature measurement to increase data accuracy. This system uses NodeMCU ESP8266 as a microcontroller and is integrated with an Android application as a user interface. Sensor interpretation data is analyzed using the Decision Tree algorithm to determine soil conditions (dry, damp or wet). The test results show an accuracy level of 95% from 300 data samples. Thus, this system is able to detect soil moisture effectively and can help increase the efficiency of crop management on a household and commercial agricultural scale.

 

Keywords: agriculture, android, decision tree algorithm, sensors, soil moisture detection

 

References

I. Setiawan, M. D. T. Musa, D. A. Afriza, and S. N. Hafidah, “Comparing Machine Learning Algorithms to Enhance Volumetric Water Content Prediction in Low-Cost Soil Moisture Sensor,” J. Appl. Informatics Comput., vol. 9, no. 1, pp. 140–145, 2025, doi: 10.30871/jaic.v9i1.8905.

B. Sutomo, T. A. Saputri, and I. W. Satria, “Utilizing IoT Technology for Soil Moisture Management through Integration of pH and Moisture Sensors in an Android Application for Rice Farming,” Int. J. Softw. Eng. Comput. Sci., vol. 5, no. 1, pp. 248–258, 2025, doi: 10.35870/ijsecs.v5i1.3538.

S. Mane et al., “Development of low-cost handheld soil moisture sensor for farmers and citizen scientists,” Front. Environ. Sci., vol. 13, no. May, pp. 1–23, 2025, doi: 10.3389/fenvs.2025.1590662.

M. R. H. Hossain and M. A. Kabir, “Machine Learning Techniques for Estimating Soil Moisture from Smartphone Captured Images,” Agric., vol. 13, no. 3, 2023, doi: 10.3390/agriculture13030574.

T. Song, Y. Si, J. Gao, W. Wang, C. Nie, and J. J. Klemeš, “Prediction and monitoring model for farmland environmental system using soil sensor and neural network algorithm,” Open Phys., vol. 21, no. 1, 2023, doi: 10.1515/phys-2022-0224.

M. Muchlasin, Muhammad Hasbi, and Sri Siswanti, “Decision Tree Method for Automation of Plant Sprinklers and Monitoring Based On Soil Moisture,” J. Nas. Pendidik. Tek. Inform., vol. 12, no. 1, pp. 25–32, 2023, doi: 10.23887/janapati.v12i1.59075.

E. N. Mardiyati, T. Dewi, and Y. Oktarina, “Analisa Prediksi Tegangan Input Sensor Capacitive Soil Moisture dengan Random Forest untuk Mendukung Pertanian Pintar,” J. Appl. Smart Electr. Netw. Syst., vol. 4, no. 2, pp. 47–53, 2024, doi: 10.52158/jasens.v4i2.787.

S. N. Faridah, M. T. Sapsal, T. A. A. Jamaluddin, A. D. Achmad, and M. A. Surya, “Stability of soil moisture sensors for agricultural crop cultivation,” Res. Agric. Eng., vol. 71, no. 2, pp. 88–94, 2025, doi: 10.17221/33/2024-RAE.

I. Ivanova, “Soil moisture forecasting from sensors-based soil moisture, weather and irrigation observations: A systematic review,” Smart Agric. Technol., vol. 10, no. November 2024, p. 100692, 2025, doi: 10.1016/j.atech.2024.100692.

J. Panyavaraporn, P. Horkaew, R. Arjwech, and S. Eua-apiwatch, “Machine Learning Approaches for Soil Moisture Prediction Using Ground Penetrating Radar: A Comparative Study of Tree-Based Algorithms,” Earth (Switzerland), vol. 6, no. 3, pp. 1–25, 2025, doi: 10.3390/earth6030098.

Published
2025-09-30
How to Cite
Aziz Ritonga, M., & Tanti, L. (2025). DESIGN AND CONSTRUCTION OF SOIL MOISTURE DETECTION TOOL USING ANDROID BASED DECISION TREE ALGORITHM. JURTEKSI (jurnal Teknologi Dan Sistem Informasi), 11(4), 771 - 778. https://doi.org/10.33330/jurteksi.v11i4.4194
Section
Articles