COMPARISON OF DECISION TREE AND RANDOM FOREST ALGORITHMS FOR ASTHMA

  • Wisriani Lase STMIK TIME
  • Robet Robet STMIK TIME
  • Hendri Hendri STMIK TIME
Keywords: Keywords: Asthma Detection; Decision Tree; Random Forest.

Abstract

Abstract: Asthma is a chronic respiratory disease that affects millions of people worldwide, making early detection crucial to prevent complications. This study aims to compare the performance of the Decision Tree and Random Forest algorithms in classifying asthma based on clinical symptom data. The data were processed through feature selection and model training stages, then evaluated using accuracy, precision, recall, and F1-score.The experimental analysis revealed that the Random Forest algorithm surpassed the Decision Tree in all metrics, achieving 95.19% accuracy, 90.43% precision, 95.00% recall, and 93.00% F1-score. In contrast, the Decision Tree obtained 89.14% accuracy, 90.60% precision, 88.70% recall, and 89.70% F1-score. These results suggest that Random Forest is more robust and dependable, especially in managing complex and imbalanced medical datasets.

 

Keywords: asthma detection; decision tree; random forest; machine learning.

 

 

Abstrak: Asma merupakan penyakit pernapasan kronis yang memengaruhi jutaan orang di seluruh dunia sehingga deteksi dini sangat penting untuk mencegah komplikasi. Penelitian ini bertujuan membandingkan kinerja algoritma Decision Tree dan Random Forest dalam mengklasifikasikan asma berdasarkan data gejala klinis. Data diproses melalui tahapan seleksi fitur dan pelatihan model, kemudian dievaluasi menggunakan akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa Random Forest memberikan performa terbaik dengan akurasi 90.43%, presisi 95.00%, recall 95.00%, dan F1-score 93.00%. Sebaliknya, Decision Tree memperoleh akurasi 89.14%, presisi 90.60%, recall 88.70%, dan F1-score 89.70%. Hasil ini menunjukkan bahwa Random Forest lebih kuat dan dapat diandalkan, terutama dalam mengelola kumpulan data medis yang kompleks dan tidak seimbang.

 

Kata kunci: deteksi asma; decision tree; random forest; pembelajaran mesin.

References

Z. Mao et al., “Global, regional, and national burden of asthma from 1990 to 2021: A systematic analysis of the global burden of disease study 2021,” Chinese Med. J. Pulm. Crit. Care Med., vol. 3, no. 1, pp. 50–59, 2025, doi: 10.1016/j.pccm.2025.02.005.

Z. Jeddi, I. Gryech, M. Ghogho, M. E. L. Hammoumi, and C. Mahraoui, “Machine learning for predicting the risk for childhood asthma using prenatal, perinatal, postnatal and environmental factors,” Healthc., vol. 9, no. 11, 2021, doi: 10.3390/healthcare9111464.

H. A. Salman, A. Kalakech, and A. Steiti, “Random Forest Algorithm Overview,” Babylonian J. Mach. Learn., vol. 2024, pp. 69–79, 2024, doi: 10.58496/bjml/2024/007.

D. Kurniawan, M. Wahyudi, L. Pujiastuti, and S. Sumanto, “Deteksi dan Prediksi Cerdas Penyakit Paru-Paru dengan Algoritma Random Fores,” Indones. J. Comput. Sci., vol. 3, no. 1, pp. 51–56, 2024, doi: 10.31294/ijcs.v3i1.6071.

H. Abtahi, S. Amini, M. Gholamzadeh, and M. A. Gharabaghi, “Development and evaluation of a mobile-based asthma clinical decision support system to enhance evidence-based patient management in primary care,” Informatics Med. Unlocked, vol. 37, no. January, p. 101168, 2023, doi: 10.1016/j.imu.2023.101168.

A. Ehtesham, S. Kumar, A. Singh, and T. T. Khoei, “Pediatric Asthma Detection with Googles HeAR Model: An AI-Driven Respiratory Sound Classifier,” 2025, [Online]. Available: http://arxiv.org/abs/2504.20124

P. Kotlia, J. Pant, and M. C. Lohani, “Identifying Asthma Risk Factors and Developing Predictive Models for Early Intervention Using Machine Learning,” Biomed. Pharmacol. J., vol. 18, no. March, pp. 295–314, 2025, doi: 10.13005/bpj/3089.

S. Indriani, E. D. Setyoningsih, D. Titisari, and A. J. Wuryanto, “Design Of Asthma Detection Devices Through Heart Rate and Oxygen Saturation,” Indones. J. Electron. Electromed. Eng. Med. informatics, vol. 2, no. 3, pp. 143–149, 2020, doi: 10.35882/ijeeemi.v2i3.6.

Hapipah, “Edukasi Peningkatan Pengetahuan Tentang Penyakit Asma Berdasarkan data dari World Health saluran napas yang biasanya ditandai penyakit asma sangat diperlukan . pengetahuan tentang asma , penyebab ,” vol. 1, no. 2, pp. 13–18, 2023.

M. F. Bağcı et al., “Detection and prediction of real-world severe asthma phenotypes by application of machine learning to electronic health records,” J. Allergy Clin. Immunol. Glob., vol. 4, no. 3, pp. 1–8, 2025, doi: 10.1016/j.jacig.2025.100473.

C. Chen et al., “Genetic biomarker prediction based on gender disparity in asthma throughout machine learning,” Front. Med., vol. 11, no. September, pp. 1–10, 2024, doi: 10.3389/fmed.2024.1397746.

S. Alkobaisi, M. F. Safdar, P. Pałka, and N. A. Abu Ali, “Artificial Intelligence Algorithms in Asthma Management: A Review of Data Engineering, Predictive Models, and Future Implications,” Appl. Sci., vol. 15, no. 7, pp. 1–23, 2025, doi: 10.3390/app15073609.

E. Sagheb et al., “AI model for predicting asthma prognosis in children,” J. Allergy Clin. Immunol. Glob., vol. 4, no. 2, p. 100429, 2025, doi: 10.1016/j.jacig.2025.100429.

K. Tomita et al., “Construction of a Diagnostic Algorithm for Diagnosis of Adult Asthma Using Machine Learning with Random Forest and XGBoost,” Diagnostics, vol. 13, no. 19, 2023, doi: 10.3390/diagnostics13193069.

Zahab, M., Hussain, M., & Parwati, L. S., “Prediction of Asthma Disease Using Machine-Learning Algorithm,” Eng. Proc., vol. 107, no. 1, 2025, doi:10.3390/engproc2025107115.

J. R. N. A. Gunawardana, S. D. Viswakula, R. P. Rannan-Eliya, and N. Wijemunige, “Machine learning approaches for asthma disease prediction among adults in Sri Lanka,” Health Informatics J., vol. 30, no. 3, 2024, doi: 10.1177/14604582241283968.

H. Joo, D. Lee, S. H. Lee, Y. K. Kim, and C. K. Rhee, “Increasing the accuracy of the asthma diagnosis using an operational definition for asthma and a machine learning method,” BMC Pulm. Med., vol. 23, no. 1, pp. 1–9, 2023, doi: 10.1186/s12890-023-02479-4.

D. D. Li, T. Chen, Y. L. Ling, Y. Jiang, and Q. G. Li, “A Methylation Diagnostic Model Based on Random Forests and Neural Networks for Asthma Identification,” Comput. Math. Methods Med., vol. 2022, 2022, doi: 10.1155/2022/2679050.

J. Lam Shin Cheung, N. Paolucci, C. Price, J. Sykes, and S. Gupta, “A system uptake analysis and GUIDES checklist evaluation of the Electronic Asthma Management System: A point-of-care computerized clinical decision support system,” J. Am. Med. Informatics Assoc., vol. 27, no. 5, pp. 726–737, 2020, doi: 10.1093/jamia/ocaa019.

P. Zhou, C. xia Xiang, and J. feng Wei, “The clinical significance of spondin 2 eccentric expression in peripheral blood mononuclear cells in bronchial asthma,” J. Clin. Lab. Anal., vol. 35, no. 6, pp. 1–9, 2021, doi: 10.1002/jcla.23764.

Published
2025-12-12
How to Cite
Lase, W., Robet, R., & Hendri, H. (2025). COMPARISON OF DECISION TREE AND RANDOM FOREST ALGORITHMS FOR ASTHMA. JURTEKSI (jurnal Teknologi Dan Sistem Informasi), 12(1), 37 - 44. https://doi.org/10.33330/jurteksi.v12i1.4192