DATABASE OPTIMIZATION FOR THE ROYAL MENGAJAR APPLICATION SUPPORTING CROWDSOURCED ACADEMIC CONTENT

  • Muhammad Iqbal Universitas Royal
  • Junaidi Universitas Royal
Keywords: crowdsourced academic content, constraint, database optimization, royal teaching

Abstract

Abstract: The development of digital learning systems requires not only effective content delivery but also database consistency and performance, particularly when used at scale by lecturers and students. Weaknesses in database design can lead to data duplication, relational violations, and transaction failures that compromise system reliability. This study designed the Royal Mengajar application using PHP and MySQL, supported by JavaScript, HTML, and Bootstrap 5. The Crowdsourced Academic Content model enables lecturers to contribute learning materials openly, while students evaluate them through a user rating system. The objective of this research is to design and optimize the database architecture of the Royal Mengajar application by implementing multiple control mechanisms—namely views, triggers, transactions, and constraints—to enhance data efficiency, consistency, and integrity in digital learning environments. Database optimization focuses on the use of views to improve query efficiency, triggers to maintain automatic consistency, transactions to ensure atomicity in multi-table operations, and constraints to preserve data integrity. The results show that views reduced the average query execution time to 0.12 seconds, triggers maintained consistency without manual intervention, and constraints achieved 100% referential integrity. The application of these mechanisms significantly improved system speed, reduced data redundancy, and enhanced information reliability, thus reinforcing the sustainability of Royal Mengajar as a community-driven learning platform

Keywords: crowdsourced academic content; constraint; database optimization; trigger.

 

Abstrak: Pengembangan sistem pembelajaran digital tidak hanya menuntut penyajian materi, tetapi juga konsistensi serta kinerja basis data ketika sistem digunakan secara masif oleh dosen dan mahasiswa. Kelemahan rancangan database dapat menimbulkan duplikasi data, pelanggaran relasi, dan kegagalan transaksi yang memengaruhi keandalan sistem. Penelitian ini merancang aplikasi Royal Mengajar berbasis PHP dan MySQL dengan dukungan JavaScript, HTML, dan Bootstrap 5. Model Crowdsourced Academic Content memungkinkan dosen berkontribusi secara terbuka, sedangkan mahasiswa melakukan evaluasi melalui user rating system. Tujuan penelitian ini adalah untuk merancang dan mengoptimalkan basis data aplikasi Royal Mengajar melalui penerapan berbagai mekanisme pengendali, seperti view, trigger, transaction, dan constraint, guna meningkatkan efisiensi, konsistensi, dan integritas data dalam sistem pembelajaran digital. Optimalisasi database difokuskan pada penerapan view untuk efisiensi query, trigger untuk menjaga konsistensi otomatis, transaction untuk memastikan atomicity pada operasi multi-tabel, serta constraint guna menjamin integritas data. Hasil pengujian menunjukkan view menurunkan rata-rata waktu eksekusi query menjadi 0,12 detik, trigger menjaga konsistensi tanpa intervensi manual, dan constraint memastikan integritas referensial tercapai 100%. Penerapan mekanisme ini berdampak pada peningkatan kecepatan sistem, berkurangnya redundansi, serta keandalan informasi yang lebih tinggi, sehingga mendukung keberlanjutan Royal Mengajar sebagai platform pembelajaran berbasis kontribusi komunitas.

Kata kunci: basis data; optimasi; trigger; constraint; crowdsourced academic content.

References

C. A. Bonfield, M. Salter, A. Longmuir, M. Benson, and C. Adachi, “Transformation or evolution?: Education 4.0, teaching and learning in the digital age,” High. Educ. Pedagog., vol. 5, no. 1, pp. 223–246, 2020, doi: 10.1080/23752696.2020.1816847.

S. N. Vachkova, E. Y. Petryaeva, D. A. Milyaeva, N. S. Ageeva, and S. V. Mikhailova, “Analytical Review of Education Policies on Digital Transformation of School Education Worldwide,” pp. 248–270, 2022, doi: 10.15405/epes.22043.23.

M. Tavakoli, M. Elias, G. Kismihók, and S. Auer, “Metadata analysis of open educational resources,” ACM Int. Conf. Proceeding Ser., vol. 1, no. 1, pp. 626–631, 2021, doi: 10.1145/3448139.3448208.

M. Tavakoli, M. Elias, G. Kismihok, and S. Auer, “Quality prediction of open educational resources a metadata-based approach,” Proc. - IEEE 20th Int. Conf. Adv. Learn. Technol. ICALT 2020, pp. 29–31, 2020, doi: 10.1109/ICALT49669.2020.00007.

V. Lyberatos et al., “Crowdsourcing as a Pedagogical Tool in Computer Science Higher Education: a Case Study,” Hum. Comput., vol. 11, no. 1, pp. 47–70, 2024, doi: 10.15346/hc.v11i1.143.

S. J. Yu, Y. L. Hsueh, J. C. Y. Sun, and H. Z. Liu, “Developing an intelligent virtual reality interactive system based on the ADDIE model for learning pour-over coffee brewing,” Comput. Educ. Artif. Intell., vol. 2, p. 100030, 2021, doi: 10.1016/j.caeai.2021.100030.

N. Askarbekuly, T. Fayzrakhmanov, S. Babarogić, and I. Luković, “An Outcome-Based Educational Recommender System,” pp. 1–8, 2025, [Online]. Available: http://arxiv.org/abs/2509.18186

N. M. Aris, N. H. Ibrahim, and N. D. A. Halim, “Design and Development Research (DDR) Approach in Designing Design Thinking Chemistry Module to Empower Students’ Innovation Competencies,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 44, no. 1, pp. 55–68, 2025, doi: 10.37934/araset.44.1.5568.

P. Govindasamy, N. Abdullah, and R. Ibrahim, “Employing Modified Design and Development Research (DDR) Approach to Develop Creativity Clay Module to Teach Special Educational Needs (SEN) Students with Learning Disabilities,” Int. J. Acad. Res. Bus. Soc. Sci., vol. 13, no. 3, pp. 432–446, 2023, doi: 10.6007/ijarbss/v13-i3/15773.

D. I. Bologna and A. Universit, “BENCHMARKING MATERIALIZED VIEWS OF SQL-BASED STREAM,” 2023.

S. Huang, Y. Qin, X. Zhang, Y. Tu, Z. Li, and B. Cui, “Survey on performance optimization for database systems,” Sci. China Inf. Sci., vol. 66, no. 2, 2023, doi: 10.1007/s11432-021-3578-6.

Y. Zhang, Z. Ma, and J. Meng, “Auditing in the blockchain: a literature review,” Front. Blockchain, vol. 8, no. April, pp. 1–6, 2025, doi: 10.3389/fbloc.2025.1549729.

Published
2025-09-30
How to Cite
Iqbal, M., & Junaidi. (2025). DATABASE OPTIMIZATION FOR THE ROYAL MENGAJAR APPLICATION SUPPORTING CROWDSOURCED ACADEMIC CONTENT. JURTEKSI (jurnal Teknologi Dan Sistem Informasi), 11(4), 749-754. https://doi.org/10.33330/jurteksi.v11i4.4165