IMPLEMENTATION OF RANDOM FOREST CLASSIFIER FOR STUDENT GRADUATION CLASSIFICATION

  • Bazil Zaidan Putra Universitas Amikom Yogyakarta
  • Ika Nur Fajri Universitas Amikom Yogyakarta
  • Agung Nugroho Universitas Amikom Yogyakarta
Keywords: Student Graduation, Random Forest Classifier, Prediction, Streamlit, Academic Performance

Abstract

Abstract: Higher education plays an essential role in improving human resource quality, one of which is through the institution’s ability to monitor and predict student graduation outcomes. This study does not focus on a specific university but utilizes the publicly available Students Performance in Exams dataset from Kaggle, consisting of 1,000 student records containing mathematics, reading, and writing scores, along with demographic attributes such as gender, parental education level, lunch type, and test preparation participation. The data were processed through a feature engineering stage by adding an average score variable as an early indicator of graduation status. A predictive model was developed using the Random Forest Classifier, achieving an accuracy of 94.5%. The final model was integrated into a Streamlit-based web application to provide an accessible tool for academic stakeholders. The results indicate that the proposed model can serve as an effective decision-support tool for early evaluation of students’ likelihood of graduation.


Keywords: prediction; random forest classifier, streamlit, student graduation.

 

 

Abstrak: Pendidikan tinggi memegang peran penting dalam peningkatan kualitas sumber daya manusia, salah satunya melalui kemampuan institusi dalam memantau dan memprediksi tingkat kelulusan mahasiswa. Penelitian ini tidak berfokus pada perguruan tinggi tertentu, melainkan menggunakan dataset publik Students Performance in Exams dari Kaggle yang berisi 1.000 data mahasiswa, terdiri atas nilai matematika, membaca, menulis, serta atribut demografis seperti gender, tingkat pendidikan orang tua, jenis makan siang, dan partisipasi kursus persiapan. Data diolah melalui tahap feature engineering dengan menambahkan variabel average score sebagai indikator awal kelulusan. Model prediksi dibangun menggunakan algoritma Random Forest Classifier, yang menghasilkan tingkat akurasi sebesar 94,5%. Model ini kemudian diimplementasikan ke dalam aplikasi web berbasis Streamlit untuk memberikan layanan prediksi yang mudah diakses oleh pihak akademik. Hasil penelitian menunjukkan bahwa model mampu digunakan sebagai alat pendukung keputusan untuk melakukan evaluasi dini terhadap potensi kelulusan mahasiswa.

 

Kata kunci: kelulusan mahasiswa; prediksi; random forest classifier; streamlit.

References

R. Andriani Saputri and L. Ros-nita, “A Random Forest-Based Predictive Model for Student Aca-demic Performance: A Case Study in Indonesian Public High Schools,” 2025. [Online]. Availa-ble: http://jurnal.polibatam.ac.id/index.php/JAIC

F. Riskiyono and D. Mahdiana, “Implementation of Random For-est Algorithm for Graduation Pre-diction,” sinkron, vol. 8, no. 3, pp. 1662–1670, Jul. 2024, doi: 10.33395/sinkron.v8i3.13750.

I. Made and B. Adnyana, “PEN-ERAPAN TEKNIK KLASIFI-KASI UNTUK PREDIKSI KELULUSAN MAHASISWA BERDASARKAN NILAI AKADEMIK.”

M. Putra and Erwin Harahap, “Machine Learning pada Prediksi Kelulusan Mahasiswa Menggunakan Algoritma Random Forest,” Jurnal Riset Matematika, pp. 127–136, Dec. 2024, doi: 10.29313/jrm.v4i2.5102.

A. Rahman, D. Mahdiana, and A. Fauzi, “Predicting Student On-Time Graduation Using Particle Swarm Optimization and Random Forest Algorithms,” Indonesian Journal of Artificial Intelligence and Data Mining, vol. 8, no. 1, p. 161, Feb. 2025, doi: 10.24014/ijaidm.v8i1.33577.

S. A. A. Balabied and H. F. Eid, “Utilizing random forest algorithm for early detection of academic underperformance in open learning environments,” PeerJ Comput Sci, vol. 9, 2023, doi: 10.7717/peerj-cs.1708.

R. Bakri, N. P. Astuti, and A. S. Ahmar, “Evaluating Random For-est Algorithm in Educational Data Mining: Optimizing Graduation on-time prediction using Imbal-ance Methods,” ARRUS Journal of Social Sciences and Humanities, vol. 4, no. 1, pp. 108–116, Feb. 2024, doi: 10.35877/soshum2449.

D. Khairy, N. Alharbi, M. A. Amasha, M. F. Areed, S. Alkhalaf, and R. A. Abougalala, “Prediction of student exam performance us-ing data mining classification al-gorithms,” Educ Inf Technol (Dordr), vol. 29, no. 16, pp. 21621–21645, Nov. 2024, doi: 10.1007/s10639-024-12619-w.

D. Doz, M. Cotič, and D. Felda, “Random Forest Regression in Predicting Students’ Achieve-ments and Fuzzy Grades,” Mathe-matics, vol. 11, no. 19, Oct. 2023, doi: 10.3390/math11194129.

M. Yağcı, “Educational data min-ing: prediction of students’ aca-demic performance using machine learning algorithms,” Smart Learning Environments, vol. 9, no. 1, Dec. 2022, doi: 10.1186/s40561-022-00192-z.

P. Matt, B. Holtman, E. Muja, and X. Li, “Student Performance on Exams.”

S. Kumar Ghosh and F. Janan, “Prediction of Student’s Perfor-mance Using Random Forest Clas-sifier.”

C. Ma, “Improving the Prediction of Student Performance by Inte-grating a Random Forest Classifier with Meta-Heuristic Optimization Algorithms,” 2024. [Online]. Available: www.ijacsa.thesai.org

M. Gusnina, Wiharto, and U. Sal-amah, “Student Performance Pre-diction in Sebelas Maret Universi-ty Based on the Random Forest Algorithm,” Ingenierie des Sys-temes d’Information, vol. 27, no. 3, pp. 495–501, Jun. 2022, doi: 10.18280/isi.270317.

F. A. S. Wibowo et al., “IMPACT OF FEATURE SELECTION ON DECISION TREE AND RAN-DOM FOREST FOR CLASSIFY-ING STUDENT STUDY SUC-CESS,” Barekeng, vol. 19, no. 3, pp. 2083–2096, Jul. 2025, doi: 10.30598/barekengvol19iss3pp2083-2096.

Published
2025-12-12
How to Cite
Zaidan Putra, B., Nur Fajri, I., & Nugroho, A. (2025). IMPLEMENTATION OF RANDOM FOREST CLASSIFIER FOR STUDENT GRADUATION CLASSIFICATION . JURTEKSI (jurnal Teknologi Dan Sistem Informasi), 12(1), 29 - 36. https://doi.org/10.33330/jurteksi.v12i1.4160