DEVELOPMENT RICE PLANT DISEASE CLASSIFICATION USING CNN WITH TRANSFER LEARNING
Abstract
Abstract: The rice plant, Oryza sativa, is a major food source in Indonesia. This plant is processed into rice, a staple food for the Indonesian people. Rice growth is crucial to ensure the rice produced is of good quality. One part of the rice plant that is susceptible to disease is the leaves, which can inhibit growth and reduce rice quality. Therefore, early detection and accurate classification of rice diseases are crucial to minimize these negative impacts. This has driven the development of a Deep Learning model capable of high-performance automatic classification. This study aims to create a rice leaf classification model using the CNN algorithm and several transfer learning architectures such as ResNet101, VGG16, and Xception. A dataset of 859 rice leaf images collected from the Kaggle website was then processed using augmentation techniques to a total of 2,439 images, plus 215 smartphone photos for external data validation. Thus, the total dataset increased to 2,656 images, covering four categories: leafblast, brownspot, healthy, and hispa. The model was processed in two stages: on the initial dataset (Non-Augmented Dataset) and the Augmented Dataset. The best experimental results were obtained using the ResNet architecture, with a training accuracy of 96.17% and a validation accuracy of 95.22%. Based on the research results, the rice plant disease classification model using deep learning demonstrated good performance.
Keywords: convolutional neural network; deep learning; fine-tuning; image classification; resnet; rice plant
References
U. N. Oktaviana, R. Hendrawan, A. D. K. Annas, and G. W. Wicaksono, “Classification of Rice Diseases based on Leaf Image Using Resnet101 Trained Model,” J. RESTI, vol. 5, no. 6, pp. 1216–1222, Dec. 2021, doi: 10.29207/resti.v5i6.3607.
K. Effendi, A. Munif, and I. W. Winasa, “Pengetahuan, Sikap, dan Tindakan Petani Upsus dalam Mengendalikan Hama dan Penyakit Tanaman Padi,” J. Ilmu Pertan. Indones., vol. 25, no. 4, pp. 515–523, 2020, doi: 10.18343/10.18343/jipi.25.4.515.
E. Anggiratih, S. Siswanti, S. K. Octaviani, and A. Sari, “Klasifikasi Penyakit Tanaman Padi Menggunakan Model Deep Learning Efficientnet B3 dengan Transfer Learning,” J. Ilm. SINUS, vol. 19, no. 1, p. 75, 2021, doi: 10.30646/sinus.v19i1.526.
A. W. Salehi, S. Khan, G. Gupta, B. I. Alabduallah, and A. Almjally, “Cnn1.Pdf,” 2023.
Y. Borhani, J. Khoramdel, and E. Najafi, “A deep learning based approach for automated plant disease classification using vision transformer,” Sci. Rep., vol. 12, no. 1, pp. 1–10, 2022, doi: 10.1038/s41598-022-15163-0.
S. Ramesh and D. Vydeki, “Recognition and classification of paddy leaf diseases using Optimized Deep Neural network with Jaya algorithm,” Inf. Process. Agric., vol. 7, no. 2, pp. 249–260, 2020, doi: 10.1016/j.inpa.2019.09.002.
A. S. Arnob, A. K. Kausik, Z. Islam, R. Khan, and A. Bin Rashid, “Comparative result analysis of cauliflower disease classification based on deep learning approach VGG16, inception v3, ResNet, and a custom CNN model,” Hybrid Adv., vol. 10, no. December 2024, p. 100440, 2025, doi: 10.1016/j.hybadv.2025.100440.
I. Y. Purbasari, B. Rahmat, and C. S. Putra PN, “Detection of Rice Plant Diseases using Convolutional Neural Network,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1125, no. 1, p. 012021, 2021, doi: 10.1088/1757-899x/1125/1/012021.
A. A. J. V. Priyangka and I. M. S. Kumara, “Classification Of Rice Plant Diseases Using the Convolutional Neural Network Method,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 12, no. 2, p. 123, 2021, doi: 10.24843/lkjiti.2021.v12.i02.p06.
S. Jatmika and D. E. Saputra, “Rice Plants Disease Identification Using Deep Learning with Convolutional Neural Network Method,” SinkrOn, vol. 7, no. 3, pp. 2008–2016, 2022, doi: 10.33395/sinkron.v7i3.11540.
B. Shah and H. Bhavsar, “Time Complexity in Deep Learning Models,” Procedia Comput. Sci., vol. 215, no. 2022, pp. 202–210, 2022, doi: 10.1016/j.procs.2022.12.023.
H. Nata Niko Pirnando and J. Petrus, “4 TH MDP STUDENT CONFERENCE (MSC) 2025 Universitas Multi Data Palembang | 207 Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network dengan Arsitektur AlexNet,” pp. 207–214, 2025.
E. N. Arrofiqoh and Harintaka, “IMPLEMENTASI METODE CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI TANAMAN PADA CITRA RESOLUSI TINGGI ( The Implementation of Convolutional Neural Network Method for Agricultural Plant Classification in High Resolution Imagery ),” Geomatika, vol. 24, no. 2, pp. 61–68, 2018.
N. H. Habibah, T. Al Mudzakir, H. Y. Novita, and A. Fauzi, “Pengembangan Model Klasifikasi Jenis Pisang Menggunakan Convolutional Neural Network Dengan Arsitektur VGG16,” J. Sist. Komput. dan Inform., vol. 6, no. 4, pp. 221–229, 2025, doi: 10.30865/json.v6i4.8616.
M. Bhandari, T. B. Shahi, A. Neupane, and K. B. Walsh, “BotanicX-AI: Identification of Tomato Leaf Diseases Using an Explanation-Driven Deep-Learning Model,” J. Imaging, vol. 9, no. 2, 2023, doi: 10.3390/jimaging9020053.