CRITERIA ANALYSIS OF COURSE PARTICIPANTS USING K-MEANS: A CASE STUDY OF INET PALEMBANG
Abstract
Abstract: INET Computer Palembang, as a computer training institution, faces difficulties in understanding participant characteristics due to variations in age, educational background, and chosen course packages. This study aims to analyze participant criteria and group them based on similarities using the K-Means Clustering algorithm. The data used were historical records of course participants from 2022 to 2025. The research process followed the CRISP-DM stages, starting from data cleaning and transformation, determining the optimal number of clusters using the Elbow Method, to evaluating cluster quality with the Davies-Bouldin Index. The implementation was carried out using Python and the scikit-learn library. The results show that the optimal number of clusters is k=5 with a Sum of Squared Errors (SSE) value of 1064.66 and a Davies-Bouldin Index (DBI) score of 0.820, indicating good cluster quality. The resulting clustering provides a structured profile of participants and demonstrates that K-Means is effective in segmenting course participants. These findings are expected to assist the institution in designing more targeted training programs.
Keywords: clustering; data mining; elbow method; k-means; computer course
References
N. Wijaya, K. Lie, M. Akbar, Q. P. Effendy, and D. F. A. Hariyadi, “Optimalisasi Pemilihan Smartphone Berbasis AI Tahun 2025 Menggunakan Metode Weighted Product dalam Sistem Pendukung Keputusan,” Digital Transformation Technology, vol. 5, no. 1, pp. 107–114, May 2025, doi: 10.47709/DIGITECH.V5I1.5855.
P. Studi Manajemen and F. Ekonomi dan Bisnis Islam, “PENGARUH KUALITAS DA-TA TERHADAP INOVASI DA-LAM MANAJEMEN PEMASA-RAN,” Musytari : Jurnal Mana-jemen, Akuntansi, dan Ekonomi, vol. 6, no. 4, pp. 81–90, Jul. 2024, doi: 10.8734/MUSYTARI.V6I4.4267.
* Dinda, R. Andini, E. Fitrianti, E. A. Lestari, and D. Brutu, “Peran Organisasi Pendidikan di Luar Sekolah dalam Meningkatkan Kualitas Pembelajaran Non-Formal: Studi Kasus di Lembaga Kursus dan Pelatihan,” Jurnal Ino-vasi, Evaluasi dan Pengembangan Pembelajaran (JIEPP), vol. 5, no. 1, pp. 158–163, Apr. 2025, doi: 10.54371/JIEPP.V5I1.794.
A. R. N. Nabella, H. Z. Zahro’, and Y. A. Pranoto, “Rancang Bangun Sistem TOEFL Untuk Analisis Kelemahan Peserta Dengan Penerapan Algoritma K-Means Clustering,” Infotek: Jurnal Informatika dan Teknologi, vol. 8, no. 1, pp. 94–103, Jan. 2025, doi: 10.29408/JIT.V8I1.28260.
V. Maulida, N. Mulyani, and M. F. L. Sibuea, “Sistem Klasifikasi Strata Kelas Peserta Kursus ber-basis web menggunakan algoritma K-Means,” Edumatic: Jurnal Pen-didikan Informatika, vol. 8, no. 2, pp. 477–486, Dec. 2024, doi: 10.29408/edumatic.v8i2.27311.
J. Jin, “Student behavior patterns in vocational education big data based on clustering algorithm,” Discover Artificial Intelligence, vol. 5, no. 1, pp. 1–17, Aug. 2025, doi: 10.1007/S44163-025-00433-3/FIGURES/5.
K. P. Sinaga and M. S. Yang, “A Globally Collaborative Multi-View k-Means Clustering,” Electronics 2025, Vol. 14, Page 2129, vol. 14, no. 11, p. 2129, May 2025, doi: 10.3390/ELECTRONICS14112129.
W. Kurniawan and R. Kurniawan, “PENERAPAN ALGORITMA K-MEANS CLUSTERING DALAM MENENTUKAN PELUANG MASUK SISWA KE UNIVERSITAS NEGERI,” Jurnal Informatika Teknologi dan Sains (Jinteks), vol. 7, no. 1, pp. 386–393, Mar. 2025, doi: 10.51401/JINTEKS.V7I1.5586.
A. Mulyana, Y. Hermawan, and N. J. Saputri, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Untuk Rek-omendasi Pilihan Program Studi Pada Mahasiswa Baru (Studi Ka-sus di Institut Bisnis dan Informat-ika Kesatuan),” KERNEL: Jurnal Riset Inovasi Bidang Informatika dan Pendidikan Informatika, vol. 5, no. 1, pp. 60–72, Jul. 2024, doi: 10.31284/J.KERNEL.2024.V5I1.7624.
Muslimah, R. T. Subagio, and V. D. Kartika, “Penerapan Metode K-Means untuk Klasterisasi Minat dan Bakat Siswa terhadap Ekstrakurikuler Sekolah,” REMIK: Riset dan E-Jurnal Manajemen In-formatika Komputer, vol. 8, no. 3, pp. 882–897, Aug. 2024, doi: 10.33395/REMIK.V8I3.14008.
G. Gunawan, “DATA MINING USING CRISP-DM PROCESS FRAMEWORK ON OFFICIAL STATISTICS: A CASE STUDY OF EAST JAVA PROVINCE: A case analysis of East Java Prov-ince,” Jurnal Ekonomi dan Pem-bangunan, vol. 29, no. 2, pp. 183–198, Dec. 2021, doi: 10.14203/JEP.29.2.2021.183-198.








