OPTIMIZATION OF CART ALGORITHM BASED ON ANT BE COLONY FEATURE SELECTION FOR STUNTING DIAGNOSIS

Pungkas Subarkah, Ali Nur Ikhsan, Rizki Wahyudi, Dayana Rofiqoh

Abstract


Abstract: One of the main health problems in children is stunting which is one of the concerns in the Sustainable Development Goals (SDGs). Specifically in Indonesia, the prevalence of stunting in 2024 is 21.6%. This figure is still relatively high, because the target prevalence of stunting is 14%. This study aims to implement machine learning knowledge through the Classification And Regression Trees (CART) algorithm based on Ant Be Colony (ABC) feature selection which aims to determine the increase in accuracy in analyzing stunting datasets. The data used comes from Kaggle which consists of 16500 datasets. The dataset consists of gender, age, birth length, birth weight, body length, body weight, breastfeeding and stunting status. The research methods used are data collection, data preprocessing, classification, and evaluation using K-fold cross validation. The results obtained in this research are the implementation of the CART algorithm obtained a value of 89.86% and the results of CART with Ant Be Colony (ABC) feature selection, which obtained an accuracy value of 93.65%. This shows that there is an increase in the accuracy value in the use of CART algorithm optimization and Ant Be Colony (ABC) feature selection by 3.76%. With the research results that have been obtained, it can be categorized as excellent accuracy value excellent. It is hoped that further research can be carried out by adding other classification algorithms or adding feature selection.

           
Keywords: classification; feature selection; optimazation; stunting

 

Abstrak: Salah satu masalah kesehatan utama pada anak adalah stunting yang menjadi salah satu perhatian dalam Sustainable Development Goals (SDGs). Khusus di Indonesia angka Pravelensi stunting pada tahun 2024 di angka 21.6%. Angka ini masih tergolong tinggi, karena target angka pravelensi stunting ialah 14%. Penelitian ini bertujuan untuk mengimplementasikan pengetahuan machine learning melalui algoritma Classification And Regression Trees (CART) berbasis seleksi fitur Ant Be Colony (ABC) yang bertujuan untuk mengetahui peningkatan akurasi dalam menganalisis dataset stunting. Data yang digunakan bersumber dari Kaggle yang terdiri dari 16500 dataset. Dataset terdiri dari jenis kelamin, usia, panjang lahir, berat lahir, panjangg badan, berat badan, menyusui dan status stunting.  Metode penelitian yang digunakan adalah pengumpulan data, preprocessing data, klasifikasi, dan evaluasi menggunakan K-fold cross validation. Hasil yang diperoleh pada penelitian ini adalah Implementasi algoritma CART memperoleh nilai sebesar 89,86% dan hasil seleksi fitur CART dengan Ant Be Colony (ABC) memperoleh nilai akurasi sebesar 93,65%. Hal ini menunjukkan adanya peningkatan nilai akurasi pada penggunaan optimasi algoritma CART dan pemilihan fitur Ant Be Colony (ABC) sebesar 3,76%. Dengan hasil penelitian yang telah diperoleh dapat dikategorikan nilai akurasi yang diperoleh sangat baik. Diharapkan dapat dilakukan penelitian selanjutnya dengan menambahkan algoritma klasifikasi lain atau menambahkan seleksi fitur.

 

Kata kunci: klasifikasi; optimalisasi; seleksi fitur; stunting


Full Text:

PDF

References


I. Irdawati et al., “Efforts of Increase Cadre Capacity about Stunting Prevention,” MethodsX, vol. 13, no. February, pp. 1–6, 2024, doi: 10.1016/j.mex.2024.102720.

S. Lonang and D. Normawati, “Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination,” J. Media Inform. Budidarma, vol. 6, no. 1, p. 49, 2022, doi: 10.30865/mib.v6i1.3312.

Eko, “149 Juta Anak di Dunia Alami Stunting Sebanyak 6,3 Juta di Indonesia, Wapres Minta Keluarga Prioritaskan Kebutuhan Gizi,” PAUDPEDIA. Accessed: Feb. 20, 2024. [Online]. Available: https://paudpedia.kemdikbud.go.id/berita/149-juta-anak-di-dunia-ala mi-stu nting-sebanyak-63-juta-di-indonesia-wapres-minta-keluarga-prioritaskan-kebutuhan-gizi

O. Martony, “Stunting Di Indonesia: Tantangan Dan Solusi Di Era Modern,” Int. J. Technol., vol. 47, no. 1, p. 100950, 2023, doi: https://doi.org/10.31539/j oting.v5i2.6930.

A. Yuda, Z. Septina, A. Maharani, and Y. Nurdiantami, “Tinjauan Literatur : Perkembangan Program Penanggulangan Stunting di Indonesia,” J. Epidemiol. Kesehat. Indones., vol. 6, no. 2, pp. 53–58, 2023, doi: 10.7454/epidkes.v6i2. 6049.

E. Y. Reza and T. W. Widyaningsih, “Analisis untuk Memprediksi Kualitas Tumbuh Ke mbang Balita dengan Menerapkan Metode kNN dan Naïve Bayes,” Sist. J. Sist. Inf., vol. 13, no. 5, pp. 1865–1875, 2024, doi: https://doi. org/10.32520/stmsi.v13i5.4121.

X. Yin, Y. Zuo, and G. Fu, “Design of intelligent detection method for electricity transmission line equipment defect based on data mining algorithm,” Int. J. Thermofluids, vol. 24, no. August, p. 100814, 2024, doi: 10.1016/j.ijft.2024.100814.

A. C. Kurniawan and A. Salam, “Seleksi Fitur Information Gain untuk Optimasi Klasifikasi Penyakit Tuberkulosis,” vol. 8, pp. 70–82, 2024, doi: 10.30865/ mib.v8i1.7122.

G. Bermejo-Martín et al., “Accurate detection of Covid-19 patients based on Feature Correlated Naïve Bayes (FCNB) classification strategy,” IEEE Access, vol. 9, no. 1, p. 121, 2021, doi: 10.1007/s12652-020-02883-2.

P. Subarkah, A. N. Ikhsan, and A. Setyanto, “The effect of the number of attributes on the selection of study program using classification and regression trees algorithms,” in Proceedings - 2018 3rd International Conference on Information Technology, Informa tion Systems and Electrical Engineering, ICITISEE 2018, 2018. doi: 10.1109/ICITISEE .2018.8721030.

P. Subarkah, E. P. Pambudi, S. Oktaviani, and N. Hidayah, “Perbandingan Metode Klasifikasi Data Mining untuk Nasabah Bank Telemarketing,” Matrik J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 20, no. 1, pp. 139–148, 2020, doi: 10.30812/matrik.v20i1.826.

A. Gayen and H. R. Pourghasemi, Spatial Modeling of Gully Erosion. Elsevier Inc., 2019. doi: 10.1016/b978-0-12-815226-3.00030-2.

Q. Gao, H. Xu, and A. Li, “The analysis of commodity demand predication in supply chain network based on particle swarm optimization algorithm,” J. Comput. Appl. Math., vol. 400, p. 113760, 2022, doi: 10.1016/j.cam.2021.113760.

M. Firdaus Banjar, Irawati, F. Umar, and L. N. Hayati, “Analysis of stroke classification using Random Forest method,” vol. 14, no. 3, pp. 186–193, 2022.

N. Tou and P. M. Endraswari, “Implementasi Data Mining Dalam Klasifikasi Hasil Diagnosa Pasien BPJS Menggunakan Algoritma CART,” JIKA (Jurnal Inform., vol. 6, no. 2, p. 170, 2022, doi: 10.31000/jika.v6i2.6164.

A. Fadillah Hermawan, F. Rakhmat Umbara, and F. Kasyidi, “Prediksi Awal Penyakit Stroke Berdasarkan Rekam Medis menggunakan Metode Algoritma CART (Classification and Regression Tree),” J. MIND J. | ISSN, vol. 7, no. 2, pp. 151–164, 2022, [Online]. Available: https://doi.org/10.26760/mindjournal.v7i2.151-164

P. D. Putra, S. Sukemi, and D. P. Rini, “Peningkatan Akurasi Klasifi kasi Backpropagation Mengguna kan Artificial Bee Colony dan K-NN Pada Penyakit Jantung,” J. Media Inform. Budidarma, vol. 5, no. 1, p. 208, 2021, doi: 10.30865/mib.v5i1.2634.

A. K. Nugroho and I. Permadi, “Ant Colony Optimization Untuk Menyeleksi Fitur Dan Klasifikasi Artikel,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 10, no. 1, pp. 223–232, 2019, doi: 10.24176/simet.v10i1.2944.

MUHTAROM, “Dataset Stunting,” Kaggle. Accessed: Jan. 16, 2024. [Online]. Available: https://www.kaggle.com/datasets/muhtarom/stunting-dataset

T. H. Wu, P. Y. Chen, C. C. Chen, M. J. Chung, Z. K. Ye, and M. H. Li, “Classification and Regression Tree (CART)-based estimation of soil water content based on meteorological inputs and explorations of hydrodynamics behind,” Agric. Water Manag., vol. 299, no. October 2023, 2024, doi: 10.1016/j.agwat.2024.108869.

L. Wang, L. Xie, and C. Xi, “Improved artificial bee colony algorithm for pressure source parameter inversion of Sakurajima volcano from InSAR data,” Geod. Geodyn., vol. 15, no. 6, pp. 635–641, 2024, doi: 10.1016/j.geog.2024.05.004.




DOI: https://doi.org/10.33330/jurteksi.v11i2.3579

Article Metrics

Abstract view : 34 times
PDF - 25 times

Refbacks

  • There are currently no refbacks.


Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) Universitas Royal

Copyright © LPPM UNIVERSITAS ROYAL

 

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.
pkv games bandarqq qiu qiu https://kemenagtabalong.id/ https://aoi.ngo/ https://zeronet.id/ https://bilderhoster.org/ https://kemenagbandaaceh.com/ https://perdosrijaya.org/ https://dwr-rental.com/ http://www.anatolekatok.com/ http://www.leonatamusic.com/ http://www.vaudiosoftllc.com/ https://indonesianfeministjournal.org/ https://ugcolleges.com/ https://www.bovendigoelkab.go.id/cak/ http://www.sipp.pn-nunukan.go.id/ https://journal.lemigas.esdm.go.id/public/ https://jurnal.kemendag.go.id/plugins/sob/ https://www.sipp.pn-lamongan.go.id/ https://www.mediaelangnusantara.com/ https://digimarly.com/ slot resmi misterhoki