HEART DISEASE RISK PREDICTION: EVALUATING MACHINE LEARNING ALGORITHMS WITH FEATURE REDUCTION USING LDA

Nurliana Nasution, Feldiansyah Nasution, Mhd Arief Hasan

Abstract


Abstract: Heart disease is one of the leading causes of death worldwide, making early detection and accurate diagnosis crucial for reducing mortality rates and improving patient outcomes. This study aims to evaluate the effectiveness of four machine learning algorithms—Logistic Regression, Random Forest, Support Vector Machine (SVM), and K-Nearest Neighbors (KNN)—in predicting heart disease, with a focus on enhancing model performance using Linear Discriminant Analysis (LDA) for feature reduction. Among the models, SVM achieved the highest accuracy at 84.24%, followed by Logistic Regression at 83.70%. Although Random Forest and KNN showed lower accuracies, all models benefited from LDA's dimensionality reduction. This study suggests that SVM, combined with LDA, offers an optimal solution for early and accurate heart disease prediction in the healthcare industry. 

           
Keywords: feature reduction; heart disease; linear discriminant analysis (LDA); machine learning; SVM

 

 

Abstrak: Penyakit jantung merupakan salah satu penyebab utama kematian di seluruh dunia, sehingga deteksi dini dan diagnosis yang akurat sangat penting untuk menurunkan angka kematian dan meningkatkan hasil pengobatan pasien. Penelitian ini bertujuan untuk mengevaluasi efektivitas empat algoritma pembelajaran mesin—Regresi Logistik, Random Forest, Support Vector Machine (SVM), dan K-Nearest Neighbors (KNN)—dalam memprediksi penyakit jantung, dengan fokus pada peningkatan kinerja model menggunakan Analisis Diskriminan Linear (LDA) untuk reduksi fitur. Di antara model yang diuji, SVM mencapai akurasi tertinggi sebesar 84,24%, diikuti oleh Regresi Logistik dengan 83,70%. Meskipun Random Forest dan KNN menunjukkan akurasi yang lebih rendah, semua model memperoleh manfaat dari reduksi dimensi yang diberikan oleh LDA. Studi ini menunjukkan bahwa SVM yang dikombinasikan dengan LDA merupakan solusi optimal untuk prediksi penyakit jantung secara dini dan akurat dalam industri kesehatan.

 

Kata kunci: linear discriminant analysis (LDA);  machine learning; penyakit jantung; reduksi fitur; SVM.


Full Text:

PDF

References


J. Heo, J. G. Yoon, H. Park, Y. D. Kim, H. S. Nam, and J. H. Heo, “Machine learning–based model for prediction of outcomes in acute stroke,” Stroke, vol. 50, no. 5, pp. 1263–1265, 2019.

D. Shah, S. Patel, and S. K. Bharti, “Heart Disease Prediction using Machine Learning Techniques,” SN Comput. Sci., vol. 1, no. 6, p. 345, 2020, doi: 10.1007/s42979-020-00365-y.

M. Kavitha, G. Gnaneswar, R. Dinesh, Y. R. Sai, and R. S. Suraj, “Heart disease prediction using hybrid machine learning model,” in 2021 6th international conference on inventive computation technologies (ICICT), 2021, pp. 1329–1333.

S. Mohan, C. Thirumalai, and G. Srivastava, “Effective heart disease prediction using hybrid machine learning techniques,” IEEE access, vol. 7, pp. 81542–81554, 2019.

W. E. Pratiwi et al., “Classification of Orange Fruit Using Convolutional Neural Network, Support Vector Machine, K-Nearest Neighbor and Naive Bayes Methods Based on Color Analysis,” in 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE), 2023, pp. 484–488. doi: 10.1109/ICCoSITE57641.2023.10127775.

M. Sitompul, M. A. Hasan, and M. Devega, “Forecasting Simcard Demand Using Linear Regression Method,” J. Res. Dev., vol. 8, no. 1, 2023, doi: 10.25299/itjrd.2022.12202.

N. Nasution, D. Setiawan, and M. A. Hasan, “PKM Sosialasi Aplikasi Pengelolaan Laboratorium Pertanian Fakultas Pertanian Universitas Lancang Kuning,” 2021.

P. M. and T. T. B. Xanthopoulos Petrosand Pardalos, “Linear Discriminant Analysis,” in Robust Data Mining, New York, NY: Springer New York, 2013, pp. 27–33. doi: 10.1007/978-1-4419-9878-1_4.

C. H. Park and H. Park, “A comparison of generalized linear discriminant analysis algorithms,” Pattern Recognit., vol. 41, no. 3, pp. 1083–1097, 2008, doi: https://doi.org/1 0.1016/j.patcog.2007.07.022.

V. V Ramalingam, A. Dandapath, and M. K. Raja, “Heart disease prediction using machine learning techniques : A survey Heart disease prediction using machine learning techniques : a survey,” no. August, 2019, doi: 10.14419/ijet.v7i2.8. 10557.

G. Biau and E. Scornet, “A Random Forest Guided Tour,” Nov. 2015, [Online]. Available: http://arxiv.org/ abs/1511.05741

P. Palimkar, R. N. Shaw, and A. Ghosh, “Machine learning technique to prognosis diabetes disease: Random forest classifier approach,” in Advanced computing and intelligent technologies: proceedings of ICACIT 2021, 2022, pp. 219–244.

W. Xu, J. Zhang, Q. Zhang, and X. Wei, “Risk prediction of type II diabetes based on random forest model,” in 2017 third international conference on advances in electrical, electronics, information, communi cation and bio-informatics (AEE ICB), 2017, pp. 382–386.

G. Parthiban, “Applying Machine Learning Methods in Diagnosing Heart Disease for Diabetic Patients,” vol. 3, no. 7, pp. 25–30, 2012.

T. Joachims, “SVMLight: Support Vector Machine,” 2018. [Online]. Available: https://www.researchgate. net/publication/243763293

G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “KNN model-based approach in classification,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 2888, pp. 986–996, 2003, doi: 10.1007/978-3-540-39964-3_62.




DOI: https://doi.org/10.33330/jurteksi.v11i1.3498

Article Metrics

Abstract view : 61 times
PDF - 44 times

Refbacks

  • There are currently no refbacks.


Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) Universitas Royal

Copyright © LPPM UNIVERSITAS ROYAL

 

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.