GOLD PRICE FORECASTING USING MULTIPLE LINEAR REGRESSION METHOD

Raras Tyasnurita, Rifqi Rahmadrian Luthfiansyah, Muhamad Rayhan Brameswara

Abstract


 

Abstract – Price forecasting is a part of economic decision making. Forecasting the daily rise and fall of gold prices can help investors decide when to buy or sell the commodity. The price of gold depends on many factors such as the price of other precious metals, the price of crude oil, the performance of the stock exchange, and the exchange rate of currencies. This study discusses gold price forecasting using the multiple linear regression method. The results of this study indicate that the best model is in the data distribution of 70%: 30% for training and testing, with a MAPE of 4.7% Based on these results, it can be concluded that the use of multiple linear regression method produces a fairly good model for gold prices forecasting. Besides, the correlation analysis show that the price of other precious metals greatly influences the price of gold where in this case the silver price whose correlation value is 0.87.


Keywords: forecasting, gold investment, multiple linear regression

 

Abstrak: Peramalan harga merupakan bagian dari pengambilan keputusan ekonomi. Melakukan peramalan terhadap kenaikan dan penurunan harga emas harian dapat membantu investor memutuskan kapan harus membeli atau menjual komoditas. Harga Emas bergantung pada banyak faktor seperti harga logam mulia lainnya, harga minyak mentah, kinerja bursa saham, dan nilai tukar mata uang. Penelitian ini membahas peramalan harga emas dengan menggunakan metode regresi linear ganda. Hasil dari penelitian ini menunjukkan bahwa model terbaik terdapat pada pembagian data pelatihan 70%  dan pengujian 30%, dengan MAPE sebesar 4.7%. Berdasarkan hasil tersebut dapat diambil kesimpulan bahwa penggunaan metode regresi linear ganda menghasilkan model yang cukup baik untuk  peramalan harga emas. Selain itu, analisis korelasi menunjukkan bahwa harga logam mulia lainnya sangat mempengaruhi harga emas dimana dalam hal ini variabel harga perak yang nilai korelasinya 0.87.

 

Kata kunci: peramalan; investasi emas, regresi linear ganda

 

 


Full Text:

PDF

References


Beckmann, J., Berger, T., & Czudaj, R. (2017). Gold Price Dynamics and the Role of Uncer-tainty. econstor.

Chatfield, C. (2000). TIME-SERIES FORECASTING. Flori-da: Chapman & Hall/CRC.

R. V. Kawengian (2002). Analisis Pengaruh Investasi dan Tenaga Kerja dalam Sektor Pertanian dan Sektor Industri Guna Menentukan Strategi Pembangunan Irian Jaya. Institut Pertanian Bogor.

S. Dipraja (2011). Siapa Bilang Investasi Emas Butuh Modal Gede? Proyek. Jakarta : Tangga Pustaka

S. S. Husnan (2000). Studi Ke-layakan Proyek. Yogyakarta : UPP AMP YKPN

Shafiee, S., & Topal, E. (2010). An overview of global gold mar-ket and gold price forecasting. ELSEVIER, 178-189.

Taylor, S. J., & Letham, B. (2017). Forecasting at Scale. PeerJ Pre-prints.

Tranmer, M., Murphy, J., Elliot, M., & Pampaka, M. (2020). Mul-tiple Linear Regression (2nd Edi-tion). The Cathie Marsh Centre for Census and Survey Research (CCSR).

Uyanik, G. K., & Guler, N. (2013). A study on multiple linear regression analysis. ELSEVIER, 234-240.

Madhuri, C. R., Anuradha, G., & Pujitha, M. V. (2019). House price prediction using regression techniques: A comparative study. In 2019 International conference on smart structures and systems (ICSSS) (pp. 1-5). IEEE.

Ge, Y., & Wu, H. (2020). Prediction of corn price fluctuation based on multiple linear regression analysis model under big data. Neural Computing and Applications, 32, 16843- 16855.




DOI: https://doi.org/10.33330/jurteksi.v9i3.1748

Article Metrics

Abstract view : 474 times
PDF - 417 times

Refbacks

  • There are currently no refbacks.


Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) Universitas Royal

Copyright © LPPM UNIVERSITAS ROYAL

 

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.