IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORK IN PREDICTING BIRTH RATE IN BATAM CITY USING BACKPROPAGATION METHOD

Muhammad Jufri

Abstract


Abstract: The population growth in Indonesia is increasing rapidly every year, so to help the government control the population growth through family planning programs, especially in the city of Batam. This study explains and describes one of the Artificial Terms Network methods, namely Backpropagation, where this method can predict what will happen in the future using data and information in the past. This study aims to predict the birth rate in the city of Batam to help the government with the family planning program. The data used is the annual data on the number of births in the city of Batam in 2016-2020 at The Civil Registry Office. To facilitate the analysis of research data, the data were tested using Matlab R2015b. In this study, the training process was carried out using 3 network architectures, namely 4-10-1, 5-18-1, and 4-43-1. Of these 3 architectures, the best is the 4-43-1 architecture with an accuracy rate of 91% and an MSE value of 0.0012205. The Backpropagation method can predict the amount of population growth in the city of Batam based on existing data in the past.

           

Keywords: artificial neural network; backpropagation; prediction

 

 

Abstrak: Pertumbuhan jumlah penduduk diindonesia yang setiap tahun meningkat dengan pesat, maka untuk membantu pemerintah mengendalikan jumlah pertumbuhan penduduk melalui program keluarga berencana khususnya dikota Batam. Penelitian ini  menjelaskan dan memaparkan tentang salah satu metode Jaringan Syarat Tiruan yaitu Backpropagation, dimana metode ini dapat memprediksi apa yang akan terjadi masa yang akan datang dengan menggunakan data dan informasi dimasa lalu. Penelitian ini bertujuan untuk memprediksi tingkat kelahiran di kota Batam sehingga membatu pemerintah untuk perencanaan keluarga berencana. Data yang digunakan yaitu data tahunan jumlah kelahiran di kota Batam pada tahun 2016-2020 pada Dinas Kependudukan dan Catatan Sipil. Untuk mempermudah analisis data penelitian maka, data diuji menggunakan Matlab R2015b. Pada penelitian ini dilakukan proses pelatihan menggunakan  3 arsitektur jaringan yaitu 4-10-1, 5-18-1, dan 4-43-1. Dari ke-3 arsitektur ini yang terbaik adalah arsitektur 4-43-1 dengan tingkat akurasi sebesar 91% dan nilai MSE 0,0012205. Metode backpropagation mampu memprediksi jumlah pertumbuhan penduduk di kota Batam berdasarkan data yang ada dimasa lalu.

 

Kata kunci: backpropagation; jaringan syaraf tiruan; prediksi

 


Full Text:

PDF

References


Meizir and B. Rikumahu, “Prediction of Agriculture and Mining Stock Value Listed in Kompas100 Index Using Artificial Neural Network Backpropagation,” in 2019 7th International Conference on Information and Communication Technology, ICoICT 2019, 2019.

S. P. Siregar and A. Wanto, “Analysis Accuracy of Artificial Neural Network Using Backpropagation Algorithm In Predicting Process (Forecasting),” IJISTECH (International J. Inf. Syst. Technol., vol. 1, no. 1, pp. 34–42, 2017.

Y. A. Lesnussa, C. G. Mustamu, F. Kondo Lembang, and M. W. Talakua, “Application Of Backpropagation Neural Networks In Predicting Rainfall Data In Ambon City,” Int. J. Artif. Intell. Res., vol. 2, no. 2, 2018.

E. Y. Sari, Kusrini, and A. Sunyoto, “Optimization of Weight Backpropagation with Particle Swarm Optimization for Student Dropout Prediction,” in 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering, ICITISEE 2019, 2019, pp. 423–428.

S. Karn, S. Sangole, A. Gawde, and J. Joshi, “Prediction and Classification Of Vector-Borne and Communicable Diseases through Artificial Neural Networks,” Proc. Int. Conf. Intell. Comput. Control Syst. (ICICCS 2019), pp. 1011–1015, 2019.

A. Kumar and R. Khatri, “Solar Energy Prediction Using Backpropagation in Artificial Neural Networks,” in International Conference on Advanced Computing Networking and Informatics, Advances in Intelligent Systems and Computing 870, 2019, pp. 27–34.

Y. A. Lesnussa, F. Y. Rumlawang, E. Risamasu, and C. Fhilya, “Prediction of Life Expectancy in Maluku Province Using Artificial Neural Networks Backpropagation,” J. Mat. Integr., vol. 16, no. 2, pp. 75–82, 2020.

N. Z. Purba and D. Sitompul, “ANALISIS TINGKAT AKURASI ALGORITMA BACKPROPAGATION DALAM PREDIKSI PRODUKSI UBI KAYU DI PROVINSI INDONESIA,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 3, no. 3, pp. 87–97, 2018.

R. O. Kene, S. P. D. Chowdhury, and T. O. Olwal, “Application of Artificial Intelligence Technique in Predicting 7-Days Solar Photovoltaic Electrical Power,” in 2019 SAUPEC/RobMech/PRASA Conference, 2019, pp. 679–684.

A. Wanto, “PREDIKSI PRODUKTIVITAS JAGUNG INDONESIA TAHUN 2019-2020 SEBAGAI UPAYA ANTISIPASI IMPOR MENGGUNAKAN JARINGAN SARAF TIRUAN BACKPROPAGATION,” SINTECH (Science Inf. Technol. J., vol. 1, no. 1, pp. 53–62, 2019.

M. Yanto, M. Liga, and M.Hafizh, “Neural Network Backprogation Identifikasi Pola Harga Saham Jakarta Islamic Index (JII),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 1, pp. 90–94, 2020.

G. Guntoro, L. Costaner, and L. Lisnawita, “Prediksi Jumlah Kendaraan di Provinsi Riau Menggunakan Metode Backpropagation Article,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 14, no. 1, pp. 50–57, 2019.

M. Febrina, F. Arina, and R. Ekawati, “Peramalan Jumlah Permintaan Produksi Menggunakan Metode Jaringan Syaraf Tiruan (JST) Backpropagation,” J. Tek. Ind., vol. 1, no. 2, pp. 174–179, 2013.




DOI: https://doi.org/10.33330/jurteksi.v8i1.1228

Article Metrics

Abstract view : 481 times
PDF - 257 times

Refbacks

  • There are currently no refbacks.


Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) Universitas Royal

Copyright © LPPM UNIVERSITAS ROYAL

 

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.