ANALISIS DATA SAINS: GENDER, PERTUMBUHAN INSTAGRAM DAN STRATEGI PEMASARAN GLOBAL DIGITAL

  • Yogo turnandes Universitas Lancang Kuning
  • Rezka Afrilli Universitas Lancang Kuning
  • Gogon Andeskom Universitas Lancang Kuning

Abstract

Abstract: This study aims to analyze the influence of gender on user responses to social media strategies on the Instagram platform by utilizing data science techniques. The methodology includes collecting user interaction data based on gender, statistical analysis, and applying machine learning algorithms to identify response patterns. The results reveal significant differences in how male and female users respond to social media content and campaigns, affecting marketing strategy effectiveness. Data science analysis showed that the K-Means Clustering method segmented users into three groups based on interaction patterns, with female users showing the highest engagement rate (18%) compared to male users (12%). The Decision Tree model identified gender as the most dominant predictor of engagement (40%), followed by user growth (25%) and content type (20%). The Random Forest model validated that gender-targeted strategies increased marketing effectiveness by up to 22%. Multivariate regression revealed a positive effect of female user proportion (+0.45) and a negative effect of male user proportion (−0.12) on engagement. In conclusion, a deeper understanding of gender-based response differences can assist companies in designing more targeted social media strategies and enhancing engagement.

           
Keywords: gender; social media response; instagram; data science; marketing strategy 

Abstrak: Penelitian ini bertujuan untuk menganalisis bagaimana pengaruh gender memengaruhi respons pengguna terhadap strategi media sosial di platform Instagram dengan memanfaatkan teknik data sains. Metode yang digunakan meliputi pengumpulan data interaksi pengguna berdasarkan gender, analisis statistik, dan penerapan algoritma machine learning untuk mengidentifikasi pola respons. Hasil penelitian menunjukkan adanya perbedaan signifikan dalam cara pengguna laki-laki dan perempuan merespons konten dan kampanye media sosial, yang berdampak pada efektivitas strategi pemasaran. Analisis data sains menunjukkan bahwa metode K-Means Clustering berhasil mengelompokkan pengguna ke dalam tiga segmen berdasarkan pola interaksi, dengan segmen perempuan menunjukkan tingkat engagement tertinggi (18%) dibandingkan laki-laki (12%). Model Decision Tree mengidentifikasi gender sebagai faktor paling dominan terhadap engagement dengan kontribusi sebesar 40%, disusul oleh pertumbuhan pengguna (25%) dan jenis konten (20%). Random Forest memvalidasi bahwa strategi yang disesuaikan berdasarkan gender meningkatkan efektivitas pemasaran hingga 22%. Regresi multivariat menunjukkan bahwa proporsi pengguna perempuan berkontribusi positif sebesar 0,45 poin terhadap engagement, sedangkan pengguna laki-laki berkontribusi negatif sebesar -0,12. Kesimpulannya, pemahaman mendalam tentang perbedaan respons berdasarkan gender dapat membantu perusahaan dalam merancang strategi media sosial yang lebih tepat sasaran dan meningkatkan engagement.

Kata kunci: gender; respons media sosial; instagram; data sains; strategi pemasaran

Author Biography

Yogo turnandes, Universitas Lancang Kuning
Dosen

References

J. Drenten, L. Gurrieri, and M. Tyler, “Sexualized labour in digital culture: Instagram influencers, porn chic and the commodification of the ‘gaze’,†*Gender, Work & Organization*, vol. 27, no. 1, pp. 151–166, 2020.

Hootsuite, “23 Instagram demographics marketers need to know in 2025,†*Hootsuite Blog*, 2025. [Online]. Available: https://blog.hootsuite.com/instagram-demographics/

M. H. Tan, “Influence of Instagram use on academic performance: A gender-based study in Malaysia,†*Journal of Educational Technology*, vol. 19, no. 2, pp. 98–112, 2024.

A. Smith, “Detecting sexualized content on Instagram using Google Vision API: A gender-based analysis,†*Journal of Social Media Studies*, vol. 10, no. 1, pp. 44–57, 2024.

“Consumer loyalty to Instagram Stories advertisements: A gender and generational analysis,†*Journal of Digital Marketing*, vol. 7, no. 1, pp. 33–48, 2024.

S. Jiang and A. Ngien, “The effects of Instagram use, social comparison, and self-esteem on social anxiety: A survey study in Singapore,†*Social Media + Society*, vol. 6, no. 2, pp. 1–8, 2020.

J. Peng, A. Agarwal, and K. Hosanagar, “Gender differences in self-promotion: Examining the role of evaluation apprehension,†*Management Science*, vol. 68, no. 1, pp. 25–41, 2022.

L. I. Laestadius and T. C. Witt, “Understanding and addressing gender-based inequities in social media content moderation,†*Journal of Computer-Mediated Communication*, vol. 27, no. 3, pp. 145–161, 2022.

T. Dehdarirad, “Could early tweet counts predict later citation counts? A gender study in life sciences and biomedicine,†*Journal of Informetrics*, vol. 14, no. 3, 2020.

Y. Zhang, “Gender differences in social media use for activity planning and travel: A case study of Instagram,†*Tourism Management Perspectives*, vol. 34, 2020.

A. Moorthy and S. Seshadri, “Analyzing social media user growth trends and engagement: Implications for gendered marketing,†*Digital Strategy Review*, vol. 5, no. 2, pp. 88–102, 2023.

R. Kumar, A. Rajan, and D. Shah, “Big data analytics in consumer behavior: A case study on Instagram marketing strategies,†*International Journal of Data Science*, vol. 6, no. 4, pp. 233–249, 2022.

L. Abed and H. Al-Zu’bi, “Gender patterns in digital consumer interaction: Evidence from Instagram ads,†*Middle East Journal of Marketing*, vol. 11, no. 1, pp. 14–27, 2021.

N. Marko and T. Makarova, “Cultural and gender determinants of Instagram engagement rates,†*Global Media Journal*, vol. 12, no. 2, pp. 77–91, 2023.

S. Sigala, “Integrating AI and data science in marketing research: Challenges in interpreting gendered social behavior,†*Journal of Marketing Analytics*, vol. 8, no. 1, pp. 34–50, 2020

Published
2025-03-30
Section
Articles