PENERAPAN DATA MINING MENGKLASIFIKASI POLA NASABAH MENGGUNAKAN ALGORITMA C4.5 PADA PEGADAIAN TANJUNGBALAI

Adela Ainun Damanik, Zulfi Azhar, Andy Sapta

Abstract


Abstract: There are so many people who make credit loans, but there are still many customers who pass the eligibility selection to borrow credit and add to the list of customers with bad credit at Pegadaian Tanjungbalai. In 2020, there were 60 Tanjungbalai residents who made credit loans with different amounts of funds. Of the 60 customers, 25 of them have had many credit arrears in the last few months. The Tanjungbalai Pegadaian party must be able to select customers whose payments are always stuck, especially in suppressing the NPL value. Customer assessment with a good data record needs to be done carefully for further credit. This customer data is very important to analyze in getting the pattern of customers who apply for pawn loans in order to get the current, substandard or bad category. The application of the C 4.5 algorithm to classify customer patterns at Pegadaian Tanjungbalai makes it easier for employees to classify patterns of prospective customers for credit applications, namely eligible and not eligible.

 

Keywords: C4.5 Algorithm; customer data; credit; pawnshops.

 

 

Abstrak: Banyak sekali masyarakat yang melakukan pinjaman kredit tetapi masih saja banyak nasabah yang lolos dari seleksi kelayakan untuk meminjam kredit dan menambah daftar nasabah dengan kredit macet pada Pegadaian Tanjungbalai. Pada tahun 2020, tercatat terdapat 60 orang warga Tanjungbalai yang melakukan pinjaman kredit dengan besar dana yang berbeda-beda. Dari 60 orang nasabah tersebut, 25 orang diantaranya telah banyak memiliki tunggakan kredit selama beberapa bulan terakhir. Pihak  Pegadaian Tanjungbalai harus dapat  menyeleksi nasabah yang pembayarannya selalu  macet terutama dalam menekan nilai NPL. Penilaian  nasabah  dengan  record  data  yang  baik perlu dilakukan dengan cermat untuk kredit selanjutnya. Data nasabah ini sangat penting untuk dianalisa dalam mendapatkan pola  nasabah pemohon kredit gadai agar mendapatkan kategori lancar, kurang lancar atau macet. Penerapan algoritma C 4.5 untuk mengklasifikasi pola nasabah di Pegadaian Tanjungbalai memudahkan pegawai untuk mengelompokan pola calon nasabah permohonan kredit yaitu layak dan tidak layak.

 

Kata Kunci: Algoritma C4.5; data nasabah; kredit; pegadaian.


Full Text:

PDF

References


Asmira, “Penerapan Data Mining untuk Mengklasifikasi Pola Nasabah Menggunakan Algoritma C4,5 pada Bank BRI Unit Andounohu Kendari,” J. Sist. Komput. dan Sist. Inf., vol. 1, no. 1, pp. 22–28, 2019.

D. Bayu Febriyanto, L. Handoko, and H. Aisyah, “Implementasi Algoritma C4.5 Untuk Klasifikasi Tingkat Kepuasan Pembeli Online Shop,” J. Ris. Komput., vol. 5, no. 6, pp. 569–575, 2018.

M. Firmansyah and R. Aufany, “Implementasi Metode Decision Tree Dan Algoritma C4.5 Untuk Klasifikasi Data Nasabah Bank,” Infokam, vol. XII, no. 1, pp. 1–12, 2016.

A. Husain, “Analisis Data Lifting Migas Menggunakan Metode C4.5 Pada Asosiasi Daerah Penghasil Migas,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 2, no. 3, p. 325, 2018, doi: 10.30998/string.v2i3.2442.

N. Iriadi and N. Nuraeni, “Kajian Penerapan Metode Klasifikasi Data Kelayakan Kredit Pada Bank,” J. Tek. Komput. AMIK BSI, vol. II, no. 1, pp. 132–137, 2016.

A. I. Jamhur, “Penerapan Data Mining Untuk Menganalisa Jumlah Pelanggan Aktif Dengan Menggunakan Algoritma C4.5,” Maj. Ilm., vol. 23, no. 2, pp. 12–20, 2016.

I. Junaedi, N. Nuswantari, and V. Yasin, “Perancangan Dan Implementasi Algoritma C4 . 5 Untuk Data Mining,” J. Inf. Syst. Informatics Comput., vol. 3, no. 1, pp. 29–44, 2019.

S. D. Manullang, E. Buulolo, and I. Lubis, “Implementasi Data Mining Dalam Memprediksi Jumlah Pinjaman Dengan Algoritma C4.5 Pada Kopdit CU Damai Sejahtera,” J. Sist. Komput. dan Inform., vol. 1, no. 3, p. 265, 2020, doi: 10.30865/json.v1i3.2153.

Y. Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,” Edik Inform., vol. 2, no. 2, pp. 213–219, 2017, doi: 10.22202/ei.2016.v2i2.1465.

L. N. Rani, “Klasifikasi Nasabah Menggunakan Algoritma C4.5 Sebagai Dasar Pemberian Kredit,” INOVTEK Polbeng - Seri Inform., vol. 1, no. 2, p. 126, 2016, doi: 10.35314/isi.v1i2.131.

T. F. Siallagan, “Pencarian Nasabah dengan Menggunakan Data Mining dan Algoritma C4.5 Koperasi MADUMA Subang,” J. Tek. Inform. dan Sist. Inf., vol. 1, no. 3, pp. 221–228, 2015, doi: 10.28932/jutisi.v1i3.399.

K. Umam, D. Puspitasari, and A. Nurhadi, “Penerapan Algoritma C4.5 Untuk Prediksi Loyalitas Nasabah PT Erdika Elit Jakarta,” J. Media Inform. Budidarma, vol. 4, no. 1, p. 65, 2020, doi: 10.30865/mib.v4i1.1652.

H. Widayu, S. D. Nasution, N. Silalahi, and Mesran, “Data Mining Untuk Memprediksi Jenis Transaksi Nasabah Pada Koperasi Simpan Pinjam Dengan Algoritma C4.5,” Media Inform. Budidarma, vol. Vol 1, No, no. 2, p. 37, 2017.




DOI: https://doi.org/10.33330/jutsi.v2i1.1510

Article Metrics

Abstract view : 480 times
PDF - 294 times

Refbacks

  • There are currently no refbacks.


Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK ROYAL 


Copyright © LPPM STMIK ROYAL

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.