JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi <p>JURTEKSI (jurnal Teknologi dan Sistem Informasi) is a scientific journal which is published by Lembaga <strong>Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran</strong>. &nbsp;The journal is published four times a year in December, Maret, Juni, and September. This journal contains a collection of research in information technology and computer system written by researchers, academicians, professionals, and practitioners</p> <p>JURTEKSI with <a href="http://issn.pdii.lipi.go.id/issn.cgi?daftar&amp;1415194492&amp;&amp;">ISSN 2407-1811 (printed)</a> and ISSN <a href="http://issn.pdii.lipi.go.id/issn.cgi?daftar&amp;1488971273&amp;&amp;">2550-0201 (online)</a> has been accredited with <strong>3rd</strong> grade by the Indonesian Ministry of Education and Culture decision Number<a href="https://drive.google.com/file/d/1VGa21z2-zizEPFw5pJraaDjIwFE8Hp7N/view?usp=sharing"> B/2493/E5/E5.2.1/2019</a> which is valid for five years since enacted from <strong>volume 8 number 2 (November 2022)</strong></p> <p>DOI PREFIX (by Crossref):&nbsp;10.33330/jurteksi</p> <p><strong><img src="/public/site/images/jurnalRoyal/RJI1.gif" alt="" width="10%" height="20%">&nbsp; &nbsp;<a href="https://search.crossref.org/?q=2622-3813" target="_blank" rel="noopener"><img src="/public/site/images/jurnalRoyal/crossref1.gif" alt="" width="10%" height="20%"></a><a href="https://scholar.google.com/citations?user=oK4C74gAAAAJ&amp;hl=id;view_op=list_works&amp;gmla=AJsN-F7d6M7NGmTFHK0mxBA3eH1q6CwD2rxLdv-Q1n2dQXtb4pXXsV3bPtLZHU1_Vkl9Ug9dLb7WVudRcxYwMyuMzTCD533nxDdtWiqs1sURmYD4O4adIw0" target="_self"><img src="/public/site/images/jurnalRoyal/GOOGLESCHOLAR1.gif" alt=""></a>&nbsp;<a href="https://portal.issn.org/resource/ISSN/2622-3813" target="_self"><img src="/public/site/images/jurnalRoyal/ROAD2.gif" alt="" width="10%" height="20%"></a>&nbsp;<a href="https://onesearch.id/Repositories/Repository?library_id=1760" target="_self"><img src="/public/site/images/jurnalRoyal/onesearch.gif" alt=""></a>&nbsp;<a href="http://garuda.ristekdikti.go.id/journal/view/13850" target="_self"><img src="/public/site/images/jurnalRoyal/garuda1.gif" alt="" width="10%" height="20%"></a>&nbsp;<a href="https://portal.issn.org/resource/ISSN/2622-3813" target="_self"><img src="/public/site/images/jurnalRoyal/ISSN1.gif" alt="" width="10%" height="20%"></a></strong></p> en-US jurteksi@gmail.com (Febby Madonna Yuma) Iqbalmh@royal.ac.id (Muhammad Iqbal) Mon, 15 Sep 2025 00:00:00 +0000 OJS 3.1.2.4 http://blogs.law.harvard.edu/tech/rss 60 MAMDANI FUZZY LOGIC ANALYSIS FOR ANIMAL MEDICINE STOCK OPTIMIZATION https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4070 <p><strong>Abstract:</strong> The management of veterinary drug stocks at the Veterinary Clinic Technical Implementation Unit (UPTD) of the North Sumatra Province Plantation and Livestock Service faces obstacles in the form of discrepancies between supply and demand, resulting in excess stock and budget waste. Uncertain demand for drugs is a factor that complicates decision-making in stock provision. This study aims to optimize drug stock management using the Mamdani fuzzy logic method, which is capable of handling data uncertainty and modeling information linguistically. Three input variables are used, namely initial stock, demand, and number of visits, with the output being the final stock. The process involves fuzzification, inference based on IF–THEN rules, and defuzzification using the centroid method. The results show that the developed system has a good accuracy level with a MAPE value of 17.52%, which means that this model is effective in providing optimal and efficient drug stock recommendations in a veterinary clinic environment.</p> <p>&nbsp;</p> <p><strong>Keywords:</strong> fuzzy mamdani; optimization; animal drug stock.</p> Mutia Desmarini, sriani Copyright (c) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4070 Mon, 15 Sep 2025 08:10:46 +0000 ANALYSIS OF PSI METHOD IN DECISION SUPPORT SYSTEM TO SELECT THE FEASIBILITY OF COVID 19 PATIENT DATA SCANNER RESULTS https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4081 <p><strong>Abstract:</strong> Hospitals play an important role in examining the scan results of patient data infected with the Covid 19 virus. However, there are problems when processing the scan results, namely that sometimes errors occur in the scan data, causing many failures and delays in sending data to the Health Office. The purpose of this study is to build a Desktop-based decision support system application that can facilitate hospitals in selecting the eligibility of the scan results of Covid 19 patient data. The urgency in examining the scan results of Corona patient data is a very pressing public health issue, because the long-term impact is very significant for patients. Thus, a scientific discipline is needed that can support the decision-making process, namely the Decision Support System using the Preference Selection Index (PSI) method. PSI is a simple and easy calculation method, based on statistical concepts without having to determine attribute weights. The results of this method are clear and firm values ​​​​based on the level of strength of the rules applied. The results of the research conducted on the PSI process can be concluded that valid Covid 19 patient data is Recap File I with a value of 0.2042 which is declared valid and accepted.</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <br><strong>Keyword</strong><strong>s:</strong> covid-19; decision support system; PSI</p> Iskandar Zulkarnain, Meri Sri Wahyuni, Fifin Sonata Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4081 Tue, 23 Sep 2025 04:18:47 +0000 BATTERY LIFESPAN PREDICTION FOR MOTORCYCLES USING DOUBLE MOVING AVERAGE https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/3889 <p><strong>Abstract:</strong> The inability to accurately monitor the lifespan of motorcycle batteries can lead to sudden failures, disrupt user activities, and increase maintenance costs. This issue is exacerbated by the absence of a predictive system that can assist users and workshops in planning maintenance and managing battery inventory effectively. This study aims to develop a battery lifespan prediction model for motorcycles using the Double Moving Average (DMA) method. The model is built based on historical data from 12 motorcycle units, including usage frequency, duration, terrain conditions, and maintenance habits. Forecasting is conducted through two stages of moving averages followed by trend parameter calculations. Evaluation results show that the model has a high level of accuracy, with MAPE = 0.10, MAD = 1.68, and RMSE = 2.14, indicating very low prediction errors. In addition, DMA is also used to forecast product demand at PT Anugerah Karya Abiwara Kisaran to prevent stock shortages. The system is developed using Visual Studio 2010 and Microsoft Access and has proven effective in supporting maintenance planning and inventory control. With its high accuracy and efficiency, the results of this study provide tangible contributions to decision-making in battery maintenance and inventory management.</p> <p><strong>Keywords</strong>: battery; DMA; motorcycle; prediction.</p> <p>&nbsp;</p> <p><strong>Abstrak:</strong> Ketidakmampuan dalam memantau usia pakai aki sepeda motor secara akurat dapat menyebabkan kerusakan mendadak, mengganggu aktivitas pengguna, serta meningkatkan biaya perawatan. Permasalahan ini diperburuk oleh tidak tersedianya sistem prediktif yang membantu pengguna dan bengkel dalam merencanakan perawatan serta mengelola persediaan aki secara efisien. Penelitian ini bertujuan untuk mengembangkan model prediksi usia pemakaian aki sepeda motor dengan menggunakan metode Double Moving Average (DMA). Model dibangun berdasarkan data historis dari 12 unit sepeda motor yang mencakup frekuensi penggunaan, durasi, kondisi medan dan kebiasaan perawatan. Proses peramalan dilakukan melalui dua tahap perataan bergerak, yang kemudian diikuti dengan perhitungan parameter tren. Hasil evaluasi menunjukkan bahwa model ini memiliki tingkat akurasi yang tinggi, dengan nilai MAPE sebesar 0,10, MAD sebesar 1,68, dan RMSE sebesar 2,14, yang mengindikasikan tingkat kesalahan prediksi yang sangat rendah. Selain itu, metode DMA juga diterapkan untuk meramalkan permintaan produk pada PT Anugerah Karya Abiwara Kisaran guna mencegah terjadinya kekurangan stok. Sistem dikembangkan menggunakan Visual Studio 2010 dan Microsoft Access, serta terbukti efektif dalam mendukung perencanaan perawatan dan pengendalian persediaan. Dengan akurasi dan efisiensi yang tinggi, hasil penelitian ini memberikan kontribusi nyata dalam pengambilan keputusan terkait pemeliharaan aki dan manajemen inventori.</p> <p><strong>Kata kunci</strong>: baterai; DMA; prediksi; sepeda motor.</p> Heru Syahputra, Jhonson Efendi Hutagalung, Suparmadi Copyright (c) 2025 JURTEKSI (Jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/3889 Tue, 23 Sep 2025 04:30:02 +0000 INTEGRATED AHP-TOPSIS DECISION SYSTEM FOR FAIR STUDENT PERFORMANCE EVALUATION https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4064 <p>Giving awards is essential to motivate students; however, selecting outstanding students at the junior high school level is often conducted manually and subjectively, which can lead to unfairness and prolonged processing time. This study develops a Decision Support System (DSS) that integrates the Analytical Hierarchy Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to support objective and transparent student selection. A quantitative descriptive approach was employed, with data collected through questionnaires, interviews, and documentation at two state junior high schools in Banjarmasin City. Seven assessment criteria were applied: attendance, behavior, uniform neatness, extracurricular participation, academic grades, competition achievements, and disciplinary records. AHP was used to determine the weight of each criterion, while TOPSIS ranked students based on these weights. The web-based system was developed using PHP and MySQL and evaluated using the Technology Acceptance Model (TAM). Results show that academic grades had the highest weight (28.5%), followed by attendance (22.3%) and competition performance (15.2%). The TAM evaluation yielded average scores of 4.32 for Perceived Ease of Use, 4.40 for Perceived Usefulness, 4.15 for Attitudes Towards Use, and 4.28 for Behavioral Intention to Use. The DSS produces accurate rankings, is well-received by users, and offers an efficient, fair, and replicable solution for data-driven educational governance in the digital era.</p> Rahmad Hafiz, Gandung Triyono, Noval Assegaf , Nadia Yasmin , Muhtar Effendi Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4064 Wed, 24 Sep 2025 06:28:55 +0000 CLOUD-DRIVEN OPTIMIZATION OF LECTURER PERFORMANCE DOCUMENT DIGITALIZATION USING AGILE UNIFIED PROCESS https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4106 <p>The development of digital technology encourages universities to improve effectiveness and efficiency in data management, particularly in recording and reporting faculty performance. Some lecturers still face difficulties in reporting their performance in the SISTER application due to challenges in locating documents scattered across various archives, which often leads to issues such as delays in reporting, low information accuracy, and lack of transparency of faculty performance documents for institutional needs. This study aims to optimize the digitalization of faculty performance documents based on cloud computing using the Agile Unified Process (AUP) approach, which is implemented in the development of a cloud-based system by utilizing Google Drive as the storage medium for digital faculty performance documents. The AUP methodology was chosen for its ability to combine flexible iterative and incremental principles, allowing the system to adapt quickly and continuously to user needs. Testing using Equivalence Partitioning, based on the functional and non-functional requirements of the system, has shown results in accordance with expectations.</p> Rio Irawan, Nur Inayah Syar Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4106 Wed, 24 Sep 2025 08:15:22 +0000 CRITERIA ANALYSIS OF COURSE PARTICIPANTS USING K-MEANS: A CASE STUDY OF INET PALEMBANG https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4112 <p><strong>Abstract:</strong> INET Computer Palembang, as a computer training institution, faces difficulties in understanding participant characteristics due to variations in age, educational background, and chosen course packages. This study aims to analyze participant criteria and group them based on similarities using the K-Means Clustering algorithm. The data used were historical records of course participants from 2022 to 2025. The research process followed the CRISP-DM stages, starting from data cleaning and transformation, determining the optimal number of clusters using the Elbow Method, to evaluating cluster quality with the Davies-Bouldin Index. The implementation was carried out using Python and the scikit-learn library. The results show that the optimal number of clusters is k=5 with a Sum of Squared Errors (SSE) value of 1064.66 and a Davies-Bouldin Index (DBI) score of 0.820, indicating good cluster quality. The resulting clustering provides a structured profile of participants and demonstrates that K-Means is effective in segmenting course participants. These findings are expected to assist the institution in designing more targeted training programs.</p> <p><strong>Keywords:</strong> clustering; data mining; elbow method; k-means; computer course</p> Muhammad Rasuandi Akbar, Rezania Agramanisti Azdy, Yesi Novaria Kunang, Nurul Adha Oktarini Saputri Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4112 Tue, 30 Sep 2025 00:00:00 +0000 ANALYSIS OF THE QUALITY OF "ONLINE EQUIVALENT" E-LEARNING USING WEBQUAL 4.0 AND IPA METHODS https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/3792 <p><strong>Abstract: </strong>The use of e-learning in non-formal education is increasingly important to support the improvement of access to learning, one of which is through the online platform. This study aims to analyze the quality of online services using WebQual 4.0 and Im-portance Performance Analysis (IPA) methods to evaluate the suitability between user expectations and perceptions. The research method used a quantitative approach by distributing questionnaires to active users, then analyzed using the WebQual Index to measure the overall quality of the system as well as the IPA to determine improvement priorities. The results showed that the quality of SeTARA Online was relatively good with a WebQual Index value of 0.798. However, there is still a gap between user expectations and satisfaction with a negative gap value of -0.238. The IPA analysis identified indicators in Quadrant I as priority improvements, especially in the aspects of service interaction and information presentation. These findings underscore the need for continuous development of features and technical support to optimize the user experience. The conclusion of this study suggests that there should be improvements in priority indicators to increase user satisfaction, as well as strengthen the effectiveness of online learning. Advanced research can expand variables, compare with other platforms, and combine quantitative and qualitative analysis methods for more comprehensive results.</p> <p>&nbsp;</p> <p><strong>Keywords: </strong>e-learning; importance performance analysis; quality of service; online equivalent; webqual 4.0</p> Taufik Rahman, Alfi Azizah Copyright (c) 2025 JURTEKSI (Jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/3792 Mon, 29 Sep 2025 00:00:00 +0000 VEGECHAIN: SMART CONTRACT MARKETPLACE FOR VEGETARIAN SUPPLY CHAIN OPTIMIZATION https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4076 <p><strong>Abstract:</strong> The global transition towards sustainable food systems faces significant challenges in vegetarian food supply chains, including transparency issues, distribution inefficiencies, and quality verification problems. This research proposes VegeChain development, a decentralized marketplace ecosystem based on smart contracts designed to transform vegetarian food supply chains and accelerate Meatless, Balanced, Green (MBG) program adoption. Using mixed-method methodology integrating blockchain system design, stakeholder analysis, and economic simulation, this research develops a comprehensive technology framework combining blockchain transparency, smart contract automation, and sustainable tokenomics with novel mathematical models. The system implements dynamic pricing algorithms based on Automated Market Maker (AMM) mechanisms, multi-objective optimization for supply chain efficiency, and reputation-based consensus protocols. Simulation results demonstrate that VegeChain implementation can improve supply chain efficiency by 35%, reduce food waste by 28%, and increase consumer trust by 42% measured through validated stakeholder satisfaction surveys (n=456) using 5-point Likert scales with statistical significance p&lt;0.001. Technical innovations include Byzantine Fault Tolerant consensus with 99.9% reliability, gas optimization achieving 67% cost reduction, and real-time quality verification algorithms with 98.7% accuracy.</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <br><strong>Keyword</strong><strong>s:</strong> smart contracts; supply chain optimization; automated market makers; blockchain technology; sustainable tokenomics</p> Eka Lia Febrianti, Agus Suryadi , Ilwan Syafrinal , Andhika Andhika Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4076 Tue, 30 Sep 2025 00:00:00 +0000 CNN-BASED ADAPTIVE IDS WITH FEDERATED LEARNING FOR IOT NETWORK SECURITY https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4136 <p><strong>Abstract:</strong> In the era of the Internet of Things (IoT), cyber threats are increasingly complex and dynamic, thus demanding an adaptive and intelligent network security system. This study proposes a Convolutional Neural Network (CNN)-based Intrusion Detection System (IDS) implemented through a Federated Learning (FL) approach in a Non-Independent and Identically Distributed (Non-IID) data environment. This approach allows the model to be trained in a distributed manner across multiple IoT devices without having to collect sensitive data to a central server, thereby maintaining data privacy while increasing the efficiency of the training process. The experiment used the CIC IoT 2023 dataset, which represents various modern IoT network traffic patterns. The results show that the proposed CNN–FL model achieves an overall accuracy of 0.99, with excellent performance in detecting various types of network traffic. The model obtains a perfect recall value (1.00) for normal traffic (Benign), as well as a very high F1-score for DDoS (0.99) and DoS (0.99) attacks. Stable and consistent performance across all five federation rounds demonstrates that this approach is a reliable, efficient, and accurate solution for detecting threats in distributed and privacy-preserving IoT networks.&nbsp;</p> <p><strong>Keyword</strong><strong>s:</strong> cnn; federated_learning; ids; non-iid; ciciot2023</p> <p>&nbsp;</p> <p><strong>Abstrak:</strong> Dalam era Internet of Things (IoT), ancaman siber semakin kompleks dan dinamis, sehingga menuntut sistem keamanan jaringan yang adaptif dan cerdas. Penelitian ini mengusulkan Intrusion Detection System (IDS) berbasis Convolutional Neural Network (CNN) yang diterapkan melalui pendekatan Federated Learning (FL) pada lingkungan data yang bersifat Non-Independent and Identically Distributed (Non-IID). Pendekatan ini memungkinkan model dilatih secara terdistribusi di berbagai perangkat IoT tanpa harus mengumpulkan data sensitif ke server pusat, sehingga mampu menjaga privasi data sekaligus meningkatkan efisiensi proses pelatihan. Eksperimen menggunakan dataset CIC IoT 2023, yang merepresentasikan berbagai pola lalu lintas jaringan IoT modern. Hasil penelitian menunjukkan bahwa model CNN–FL yang diusulkan mencapai akurasi keseluruhan sebesar 0.99, dengan performa yang sangat baik dalam mendeteksi berbagai jenis lalu lintas jaringan. Model memperoleh nilai recall sempurna (1.00) untuk lalu lintas normal (Benign), serta nilai F1-score yang sangat tinggi untuk serangan DDoS (0.99) dan DoS (0.99). Kinerja yang stabil dan konsisten di seluruh lima putaran federasi membuktikan bahwa pendekatan ini merupakan solusi yang andal, efisien, dan akurat untuk mendeteksi ancaman pada jaringan IoT yang bersifat terdistribusi dan menjaga privasi (privacy-preserving).</p> <p><strong>Kata kunci:</strong> cnn; federated_learning; ids; non-iid; ciciot2023</p> Sahren Sahren, Ruri Ashari Dalimunthe, Cecep Maulana, Yogi Abimanyu Permana Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4136 Tue, 30 Sep 2025 00:00:00 +0000 DEVELOPMENT OF A BLOCKCHAIN-BASED DECENTRALISED APPLICATION WITH NFT FOR LAND REGISTRATION https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4147 <p><strong>Abstract:</strong> Land registration in Indonesia often encounters challenges in transparency, data integrity, and centralized bureaucracy. Manual and semi-digital systems remain vulnerable to manipulation and delays. The National Land Agency has initiated digitalization, but several challenges remain, particularly in ensuring transparency, efficiency, and security of land ownership data. Blockchain technology offers a potential solution through its decentralized and immutable characteristics. This study adopted a design and development method consisting of system analysis, requirements identification, architecture design, implementation, and black-box testing. The developed decentralized application (DApp) integrates smart contracts, NFTs, and IPFS to manage land certificates. Core functions such as minting, transfer, splitting, and self-custody were implemented and successfully tested, with all scenarios producing expected results. The findings demonstrate that blockchain integration can enhance security, reduce duplication, and streamline land administration. The study contributes a functional prototype with practical implications for modernizing land registration in Indonesia while identifying scalability and regulatory adaptation as areas for further research.</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <br><strong>Keyword</strong><strong>s:</strong> blockchain; decentralized application; land registration; NFT; smart contract.</p> Rahmat Nugrohoning Gesang, Raden Teduh Dirgahayu Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4147 Tue, 30 Sep 2025 00:00:00 +0000 MACHINE LEARNING CONTENT-BASED FILTERING WOMEN EMPOWERING RECOMMENDATIONS ON YOUTUBE https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4154 <p><strong>Abstract:</strong> YouTube is one of the most popular video streaming platforms, but it has constraints that can cause problems when clients have difficulty finding content according to their wishes. The main objective of this study is to increase user capacity in viewing content specifically in the field of women's empowerment. By using content-based filtering techniques, the system will analyze user preferences and interests through recommendations for women's empowerment content. The data source is via the YouTube API and is analyzed using PHP programming content-based filtering techniques. The system's recommendations provide a list of women's empowerment content with a user request display. The results of the research evaluation obtained a precision value of 62%, meaning that the recommendations match the topic being searched for, namely women's empowerment. The recall value of 84% indicates that the system has succeeded in finding relations from the database. The f1-score value of 72% indicates that there is a balance between precision and recall, meaning that a system is needed that is not only accurate but also complete. While the cosine value shows a score of 0.7071 approaching the maximum value (1.0). The recommendation of the content-based filtering method produces quite effective women's empowerment content.</p> <p><br><strong>Keyword</strong><strong>s:</strong> content-based filtering, recommendations, women Empowerment, youtube</p> <p>&nbsp;</p> Yuliana Yuliana, Mira Mira, Aloysius Hari Kristianto Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4154 Tue, 30 Sep 2025 00:00:00 +0000 DEVELOPMENT RICE PLANT DISEASE CLASSIFICATION USING CNN WITH TRANSFER LEARNING https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4159 <p><strong>Abstract:</strong> The rice plant, Oryza sativa, is a major food source in Indonesia. This plant is processed into rice, a staple food for the Indonesian people. Rice growth is crucial to ensure the rice produced is of good quality. One part of the rice plant that is susceptible to disease is the leaves, which can inhibit growth and reduce rice quality. Therefore, early detection and accurate classification of rice diseases are crucial to minimize these negative impacts. This has driven the development of a Deep Learning model capable of high-performance automatic classification. This study aims to create a rice leaf classification model using the CNN algorithm and several transfer learning architectures such as ResNet101, VGG16, and Xception. A dataset of 859 rice leaf images collected from the Kaggle website was then processed using augmentation techniques to a total of 2,439 images, plus 215 smartphone photos for external data validation. Thus, the total dataset increased to 2,656 images, covering four categories: leafblast, brownspot, healthy, and hispa. The model was processed in two stages: on the initial dataset (Non-Augmented Dataset) and the Augmented Dataset. The best experimental results were obtained using the ResNet architecture, with a training accuracy of 96.17% and a validation accuracy of 95.22%. Based on the research results, the rice plant disease classification model using deep learning demonstrated good performance.</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <br><strong>Keyword</strong><strong>s:</strong> convolutional neural network; deep learning; fine-tuning; image classification; resnet; rice plant</p> Fachri Ayudi Fitrony, Ema Utami Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4159 Sun, 05 Oct 2025 07:45:43 +0000 WEBGIS-BASED GEOGRAPHICAL INFORMATION SYSTEM FOR MAPPING BAKERY SHOPS IN KISARAN CITY https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4176 <p><strong>Abstract:</strong> Bakery MSMEs in Kisaran City play a significant role in the local economy, but their distribution data is still managed manually, making it difficult to access and analyze. This study aims to develop a WebGIS-based Geographic Information System to map and manage bakery MSME data digitally and in an integrated manner. The research methods include field surveys, spatial and non-spatial data collection, system design using UML, development with Leaflet.js and MySQL, and testing using the blackbox method. The results show that the resulting system is capable of displaying interactive maps with location details, business information, and an easy-to-use search feature. This system makes it easier for the government, business actors, and the public to access MSME information and supports data-based economic development planning. With the output in the form of publications in accredited journals, this research is expected to be an effective solution for MSME data management in other regions.</p> <p><strong>Keyword:</strong> bakery; mapping; MSME; WebGIS</p> <p><strong>&nbsp;</strong></p> <p><strong>Abstrak:</strong> UMKM toko roti di Kota Kisaran memiliki peran penting dalam perekonomian lokal, namun data persebarannya masih dikelola secara manual sehingga sulit diakses dan dianalisis. Penelitian ini bertujuan mengembangkan Sistem Informasi Geografis berbasis WebGIS untuk memetakan dan mengelola data UMKM toko roti secara digital dan terintegrasi. Metode penelitian meliputi survei lapangan, pengumpulan data spasial dan non-spasial, perancangan sistem menggunakan UML, pengembangan dengan Leaflet.js dan MySQL, serta pengujian menggunakan metode blackbox. Hasil penelitian menunjukkan sistem yang dihasilkan mampu menampilkan peta interaktif dengan detail lokasi, informasi usaha, dan fitur pencarian yang mudah digunakan. Sistem ini mempermudah pemerintah, pelaku usaha, dan masyarakat dalam mengakses informasi UMKM, serta mendukung perencanaan pembangunan ekonomi berbasis data. Dengan luaran berupa publikasi pada jurnal terakreditasi, penelitian ini diharapkan menjadi solusi efektif untuk pengelolaan data UMKM di daerah lain.</p> <p><strong>Kata kunci</strong>; pemetaan; toko roti; UMKM; WebGIS</p> Yori Apridonal M, Mardalius, Bela Astuti Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4176 Sun, 28 Sep 2025 00:00:00 +0000 DEVELOPMENT OF A QR CODE-BASED WEBAR TO DIGITIZE LOCAL WISDOM AS AN EFFORT TO INCREASE TOURIST ATTRACTION IN BORDER AREAS https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4181 <p><strong>Abstract:</strong> Current technological developments play a crucial role in driving the tourism industry, one of which is the utilization of technology. However, tourist attractions in border areas face challenges such as limited access to digital information and a lack of interactive media to present local wisdom such as history, customs, and culture. This study aims to develop and implement a QR Code-based Web-based Augmented Reality (WebAR) to digitize local wisdom at tourist attractions, making information more engaging and accessible to tourists. The research methodology adopted three approaches: UCD (User-Centered Design), Agile methods, and TAM (Technology Acceptance Model). This platform contains the local wisdom of two tourist villages in the border area, namely Sebujit Village and Jagoi Babang Village. The results of testing and evaluation using multiple linear regression and SEM-PLS methods on 45 respondents showed that the WebAR technology acceptance model was significant (F = 6.583; p &lt; 0.001). User Attitude (ATU) is a key variable that significantly influences Intention to Use (BI) (β=0.429; p=0.001), while Ease of Use (PEOU) and Benefit (PU) indirectly influence BI through ATU. As additional validation, the classification test yielded an accuracy of 88.90% and an F1-score of 0.941, confirming that QR Code-based WebAR is effective and well-received as a digital information and promotion medium for local wisdom in border areas.</p> <p><strong>Keyword</strong><strong>s:</strong> border areas; local wisdom; qr code; tourist attractions; web augmented reality.</p> <p>&nbsp;</p> <p><strong>Abstrak: </strong>Perkembangan teknologi saat ini memiliki peran penting dalam mendorong industri pariwisata, salah satunya dengan pemanfaatan teknologi. Namun, objek wisata di daerah perbatasan menghadapi tantangan seperti keterbatasan akses informasi digital dan kurangnya media interaktif untuk menyajikan kearifan lokal seperti sejarah, adat istiadat, dan budaya. Penelitian ini bertujuan untuk mengembangkan dan mengimplementasikan Web-based Augmented Reality (WebAR) berbasis QR Code untuk digitalisasi kearifan lokal objek wisata, menjadikan informasi lebih menarik dan mudah diakses bagi wisatawan. Metodologi penelitian mengadopsi tiga pendekatan, UCD (User-Centered Design), metode Agile, dan TAM (Technology Acceptance Model). Platform ini memuat kearifan lokal dua desa wisata di daerah perbatasan, yaitu Desa Sebujit dan Desa Jagoi Babang. Hasil pengujian dan evaluasi dengan metode regresi linier berganda dan SEM-PLS pada 45 responden menunjukkan bahwa model penerimaan teknologi WebAR ini signifikan (F = 6.583; p &lt; 0.001). Sikap Pengguna (ATU) menjadi variabel kunci yang berpengaruh signifikan terhadap Niat Penggunaan (BI) (β=0.429; p=0.001), sementara Kemudahan Penggunaan (PEOU) dan Manfaat (PU) memengaruhi BI secara tidak langsung melalui ATU. Sebagai validasi tambahan, uji klasifikasi menghasilkan akurasi 88,90% dan F1-score 0,941, yang menegaskan bahwa WebAR berbasis Kode QR efektif dan dapat diterima dengan baik sebagai media informasi dan promosi digital kearifan lokal di wilayah perbatasan.</p> <p><strong>Kata Kunci: </strong>daerah perbatasan; kearifan lokal; qr code; web augmented reality.</p> Noviyanti P, Mira, Alexander Jerry Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4181 Tue, 30 Sep 2025 00:00:00 +0000 COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR COSMETIC SALES PREDICTION ON TOKOPEDIA https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4187 <p><strong>Abstract:</strong> The rapid growth of the cosmetics industry on e-commerce platforms has intensified competition, creating a critical need for effective, data-driven marketing strategies. This study aims to conduct a comparative analysis of machine learning algorithms to predict the sales categories (High, Medium, Low) of cosmetic products on the Tokopedia marketplace. Four classification models; Random Forest, XGBoost, Logistic Regression, and Naive Bayes were trained and evaluated on data collected via web scraping. The methodology incorporates the Synthetic Minority Over-sampling Technique (SMOTE) to address significant class imbalance and GridSearchCV for hyperparameter optimization to ensure a fair and robust comparison. The experimental results conclusively show that the Random Forest model achieved the best performance, yielding the highest F1-Score Macro Average of 0.75 and an accuracy of 85.3%. The superior model was subsequently implemented in a simple recommendation system to simulate optimal discount strategies, demonstrating its practical utility in providing actionable insights for business decisions.</p> <p><strong>Keywords:</strong> classification; comparative analysis; machine learning; sales prediction; SMOTE</p> <p>&nbsp;</p> <p><strong>Abstrak:</strong> Pertumbuhan pesat industri kosmetik pada platform e-commerce telah membuat persaingan ketat, sehingga menciptakan kebutuhan krusial akan strategi pemasaran yang efektif dan berbasis data. Penelitian ini bertujuan untuk melakukan analisis komparatif terhadap algoritma machine learning untuk memprediksi kategori penjualan (Tinggi, Sedang, Rendah) produk kosmetik di marketplace Tokopedia. Empat model klasifikasi, yaitu Random Forest, XGBoost, Regresi Logistik, dan Naive Bayes, dilatih dan dievaluasi menggunakan data yang dikumpulkan melalui web scraping. Metodologi penelitian ini menerapkan Synthetic Minority Over-sampling Technique (SMOTE) untuk mengatasi ketidakseimbangan kelas yang signifikan dan GridSearchCV untuk optimisasi hyperparameter guna memastikan perbandingan yang adil. Hasil eksperimen menunjukkan bahwa model Random Forest mencapai performa terbaik, dengan menghasilkan F1-Score Macro Average tertinggi sebesar 0,75 dan akurasi 85,3%. Model unggul ini kemudian diimplementasikan dalam sebuah sistem rekomendasi sederhana untuk menyimulasikan strategi diskon yang optimal, yang menunjukkan kegunaan praktisnya dalam memberikan wawasan yang dapat ditindaklanjuti untuk pengambilan keputusan bisnis.</p> <p><strong>Kata kunci:</strong> analisis komparatif; klasifikasi; machine learning; prediksi penjualan; SMOTE</p> Mutia Sahira, Ken Ditha Tania, Mira Afrina Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4187 Tue, 30 Sep 2025 00:00:00 +0000 DEVELOPMENT INTEGRATIVE MODEL FOR ACADEMIC INFORMATION SYSTEMS USING UTAUT, DELONE&MCLEAN, AND TTF https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4153 <p><strong>Abstract:</strong> The Academic Information System (SIAKAD) plays an important role in supporting the management of academic administration in higher education institutions, particularly for students. ABC University has implemented SIAKAD since 2018 to facilitate administrative ativities in line with its motto of a high technology campus. This study aims to measure the sucess of SIAKAD usage from the aspects of acceptance, satisfaction, suitability, and perceived benefits. The integration of the Unified Theory of Acceptance and Use of Technology (UTAUT), DeLone &amp; McLean, and Task Technology Fit (TTF) models was carried out to obain a more comprehensive overview in assessing the success of SIAKAD. UTAUT explains the factors influencing the intention to use, DeLone &amp; McLean emphasizes the relationship between system quality and both user satisfaction and net benefits, while TTF evaluates the fit between technology and user tasks. By combining these three models, the study addresses the limitations of each model and produces a more holistic approach in measuring acceptance, success, and the appropriateness of system use. The testing was conducted using SPSS and Structural Equation Modeling (SEM) analysis through AMOS.</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <br><strong>Keyword</strong><strong>s:</strong> siakad; utaut; delone&amp;mclean; penerimaan teknologi; sem</p> <p>&nbsp;</p> Asep Hilmi Mutakin, Asep Suhana, R. Willa Permatasari, Arief Budiman Krama, Andrew Ghea Mahardika Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4153 Sat, 11 Oct 2025 03:53:11 +0000 PROTOTYPE OF RICE FIELD IRRIGATION SYSTEM USING ARDUINO UNO MICROCONTROLLER AND TELEGRAM https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4068 <p><strong>Abstract: </strong>In agriculture, irrigation systems are vital for enhancing water management and maximising plant growth. Effective irrigation management involves distributing sufficient quantities of water evenly to condition soil fertility for plants. This study aims to design a prototype that can be monitored via the Telegram app. The research methodology employs a thinking framework approach. The system is implemented using an Arduino Uno microcontroller and supporting devices, including an ESP8266 Wi-Fi module, an ultrasonic sensor, a soil moisture sensor, a stepper motor and a servo motor. Telegram serves as the monitoring tool, sending notifications connected to the Arduino via a Wi-Fi network. Test results showed that the system operates effectively: the HC-SR04 ultrasonic sensor functions as a water level reader, and the stepper motor opens and closes the water gate. Soil moisture monitoring uses a soil moisture sensor to measure the water content in the soil. If the sensor detects dry soil conditions or a moisture level below 60%, the servo motor will rotate 15° to close the water channel. Conversely, if the sensor detects wet or moist soil conditions, the servo motor will rotate 0° to close the water channel.</p> <p><strong>Keywords: </strong>arduino uno; irrigation system; soil moisture; ultrasonic sensor;</p> Kevin Maulana, Ritzkal, Ade Hendri Hendrawan Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4068 Tue, 30 Sep 2025 00:00:00 +0000 IMPLEMENTATION OF THE AHP METHOD TO DETERMINE PRIORITIES IN PUBLIC COMPLAINT HANDLING https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4130 <p>&nbsp;</p> <p><strong>Abstract:</strong> The Ombudsman of the Republic of Indonesia is an institution tasked with supervising the administration of public services and handling community complaint reports related to allegations of maladministration. The purpose of this research is to create a decision support system using the Analytic Hierarchy Process (AHP) method, which facilitates the determination of priority handling of community complaint reports at the Ombudsman of the Republic of Indonesia Bengkulu Representation. This decision support system is built on a web-based platform using PHP programming language with a MySQL database that can be accessed offline by the admin of the Ombudsman. With the existence of this priority recommendation, it is expected that work will become more effective and efficient, as resources can be focused on reports that most need attention. Based on the test data used, which consists of 12 Community Complaint Reports from July 2024, it was found that the priority handling recommendations for community complaint reports were derived from 3 reports with the highest final AHP values. The recommended priority handling reports are registration number 0021/LM/VII/2024/BKL with a final AHP value of 2.074, registration number 0020/LM/VII/2024/BKL with a final AHP value of 1.964, and registration number 0018/LM/VII/2024/BKL with a final AHP value of 1.866.</p> <p><br><strong>Keyword</strong><strong>s:</strong> decision support system; priority recommendation; public complaint report; AHP Method (analytic hierarchy process method)</p> Intan Dewi Yuliansari, Lena Elfianty, Devina Ninosari Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4130 Tue, 30 Sep 2025 00:00:00 +0000 COMPARISON OF K-MEANS AND K-MEDOIDS FOR DRUG DATA CLUSTERING https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4140 <p><strong>Abstract:</strong> Ineffective drug demand management can lead to problems such as imbalanced drug distribution, excess stock, or shortages in community health centers. To address this, data mining can be utilized to support the planning and control process of drug inventory. Clustering techniques were chosen because they are able to group drug data based on certain characteristics, thus identifying stable and unstable drug supply patterns. This study aims to group drug data at Simpang Kawat Community Health Center in Jambi City, which can be used as a reference in planning drug needs in the next period. Data grouping is divided into three categories: slow-moving, medium-moving, and fast-moving. The research data includes attributes of drug name, initial stock, receipt, inventory, usage, and final stock, with a total of 1758 data sets, which were processed using the CRISP-DM framework through the RapidMiner application. Cluster quality evaluation was carried out using the Davies-Bouldin Index (DBI). The results showed that the K-Means algorithm obtained a DBI value of 0.175, smaller than K-Medoids which obtained a value of 0.354. Because a smaller DBI value indicates better cluster quality, K-Means provides more optimal clustering results than K-Medoids. Through these clustering results, community health centers can utilize drug cluster information to support more efficient drug procurement planning, as well as reduce the risk of excess or shortage of stock.</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <br><strong>Keyword</strong><strong>s:</strong> data mining; clustering; k-means; k-medoids; davies-bouldin index</p> Tripa Andika, Kurniabudi , Sharipuddin Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4140 Sun, 12 Oct 2025 09:37:24 +0000 A COMPARATIVE ANALYSIS OF OPTIMIZED NEURAL NETWORK AND LARGE-SCALE LANGUAGE MODELS FOR MUSIC GENRE CLASSIFICATION https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4198 <p><strong>Abstract:</strong> The rapid growth of the digital music industry requires accurate music genre classification systems to enhance user experience in streaming services. This study compares a domain-specific Long Short-Term Memory (LSTM) network with three Large Language Models (LLMs)—HuBERT, WavLM, and WAV2Vec 2.0—for Music Genre Classification (MGC). The LSTM model was trained using Mel-spectrograms transformed from the GTZAN dataset, while the LLMs were fine-tuned using a smaller set of raw audio samples due to computational constraints. All models were tested on datasets with identical genre labels to ensure a fair evaluation. Results show that the LSTM model achieved the highest accuracy of 97.10%, outperforming HuBERT (86.00%), WavLM (83.00%), and WAV2Vec 2.0 (80.00%). The LSTM demonstrated superior generalization and stability without overfitting, while the LLMs struggled to differentiate between genres with similar acoustic characteristics. These findings indicate that general-purpose pre-trained models, although powerful, are less effective in music-specific tasks due to domain mismatch. Therefore, incorporating music-specific features and architectures remains essential for achieving higher accuracy and reliability in automatic genre classification systems.</p> <p><strong>Keywords: </strong>audio large language models; comparative deep learning; music genre classification.</p> <p>&nbsp;</p> <p><strong>Abstrak:</strong> Pertumbuhan industri musik digital yang pesat menuntut sistem klasifikasi genre musik yang akurat untuk meningkatkan pengalaman pengguna dalam layanan streaming. Penelitian ini dilatarbelakangi oleh perkembangan pesat model pembelajaran mendalam, khususnya jaringan LSTM dan model bahasa berskala besar LLM seperti HuBERT, WavLM, dan WAV2Vec 2.0, yang telah menunjukkan kemampuan representasi audio yang kuat. Tujuan penelitian ini ini membandingkan jaringan Long Short-Term Memory (LSTM) khusus domain dengan tiga model Large Language Models (LLM)—HuBERT, WavLM, dan WAV2Vec 2.0—untuk tugas Klasifikasi Genre Musik (MGC). Metode penelitian melibatkan pelatihan LSTM menggunakan data Mel-spectrogram hasil transformasi dari dataset GTZAN, sementara LLM disesuaikan (fine-tuning) menggunakan data audio mentah dalam jumlah lebih kecil karena keterbatasan komputasi. Seluruh model diuji pada dataset dengan label genre yang sama untuk memastikan evaluasi yang adil. Hasil penelitian menunjukkan bahwa model LSTM mencapai akurasi tertinggi sebesar 97,10%, sedangkan model HuBERT, WavLM, dan WAV2Vec 2.0 masing-masing memperoleh 86,00%, 83,00%, dan 80,00%. Model LSTM menunjukkan kemampuan generalisasi yang lebih baik tanpa overfitting, sedangkan model LLM cenderung kesulitan membedakan genre dengan karakteristik akustik yang mirip. Kesimpulan penelitian ini adalah ketidaksesuaian domain secara signifikan membatasi performa model umum saat diterapkan pada tugas berbasis musik. Oleh karena itu, penggunaan fitur dan arsitektur khusus musik sangat penting dalam membangun sistem klasifikasi genre yang lebih akurat.</p> <p><strong>Kata kunci:</strong> klasifikasi genre musik; model bahasa besar; perbandingan pembelajaran mendalam.</p> Ahmad Naufal Luthfan Marzuqi, Vinna Rahmayanti Setyaning Nastiti Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4198 Tue, 30 Sep 2025 00:00:00 +0000 DATABASE OPTIMIZATION FOR THE ROYAL MENGAJAR APPLICATION SUPPORTING CROWDSOURCED ACADEMIC CONTENT https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4165 <p><strong>Abstract:</strong> The development of digital learning systems requires not only effective content delivery but also database consistency and performance, particularly when used at scale by lecturers and students. Weaknesses in database design can lead to data duplication, relational violations, and transaction failures that compromise system reliability. This study designed the Royal Mengajar application using PHP and MySQL, supported by JavaScript, HTML, and Bootstrap 5. The Crowdsourced Academic Content model enables lecturers to contribute learning materials openly, while students evaluate them through a user rating system<strong>. </strong>The objective of this research is to design and optimize the database architecture of the Royal Mengajar application by implementing multiple control mechanisms—namely views, triggers, transactions, and constraints—to enhance data efficiency, consistency, and integrity in digital learning environments. Database optimization focuses on the use of views to improve query efficiency, triggers to maintain automatic consistency, transactions to ensure atomicity in multi-table operations, and constraints to preserve data integrity. The results show that views reduced the average query execution time to 0.12 seconds, triggers maintained consistency without manual intervention, and constraints achieved 100% referential integrity. The application of these mechanisms significantly improved system speed, reduced data redundancy, and enhanced information reliability, thus reinforcing the sustainability of Royal Mengajar as a community-driven learning platform</p> <p><strong>Keywords: </strong>crowdsourced academic content; constraint; database optimization; trigger.</p> <p>&nbsp;</p> <p><strong>Abstrak:</strong> Pengembangan sistem pembelajaran digital tidak hanya menuntut penyajian materi, tetapi juga konsistensi serta kinerja basis data ketika sistem digunakan secara masif oleh dosen dan mahasiswa. Kelemahan rancangan database dapat menimbulkan duplikasi data, pelanggaran relasi, dan kegagalan transaksi yang memengaruhi keandalan sistem. Penelitian ini merancang aplikasi Royal Mengajar berbasis PHP dan MySQL dengan dukungan JavaScript, HTML, dan Bootstrap 5. Model Crowdsourced Academic Content memungkinkan dosen berkontribusi secara terbuka, sedangkan mahasiswa melakukan evaluasi melalui user rating system<strong>.</strong> Tujuan penelitian ini adalah untuk merancang dan mengoptimalkan basis data aplikasi Royal Mengajar melalui penerapan berbagai mekanisme pengendali, seperti view, trigger, transaction, dan constraint, guna meningkatkan efisiensi, konsistensi, dan integritas data dalam sistem pembelajaran digital. Optimalisasi database difokuskan pada penerapan view untuk efisiensi query, trigger untuk menjaga konsistensi otomatis, transaction untuk memastikan atomicity pada operasi multi-tabel, serta constraint guna menjamin integritas data. Hasil pengujian menunjukkan view menurunkan rata-rata waktu eksekusi query menjadi 0,12 detik, trigger menjaga konsistensi tanpa intervensi manual, dan constraint memastikan integritas referensial tercapai 100%. Penerapan mekanisme ini berdampak pada peningkatan kecepatan sistem, berkurangnya redundansi, serta keandalan informasi yang lebih tinggi, sehingga mendukung keberlanjutan Royal Mengajar sebagai platform pembelajaran berbasis kontribusi komunitas.</p> <p><strong>Kata kunci: </strong>basis data; optimasi; trigger; constraint; crowdsourced academic content.</p> Muhammad Iqbal, Junaidi Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4165 Tue, 30 Sep 2025 00:00:00 +0000 PREDICTION OF STROKE USING LOGISTIC REGRESSION WITH A MACHINE LEARNING APPROACH https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4161 <p><strong>Abstract:</strong> Stroke is one of the leading causes of death and disability in various parts of the world, including in Indonesia. Along with the development of digital technology, the use of Machine Learning in the health sector is growing, one of which is in an effort to predict the occurrence of stroke. This study aims to implement the Logistic Regression algorithm in predicting the likelihood of a person having a stroke based on data from the Brain Stroke dataset. The research process includes data preprocessing (missing value handling, normalization, and label encoding), dividing the data into 80% training data and 20% test data, as well as model training. The model was then evaluated using several measures such as accuracy, precision, recall, F1-score, and ROC-AUC, as well as a confusion matrix. The results of the study showed that Logistic Regression was able to provide stroke classification results with an accuracy of 82.4%, precision of 80.1%, recall of 78.6%, F1-score of 79.3%, and a ROC-AUC value of 0.87. Then, the model is integrated into applications that use Streamlit, so it can be used interactively to predict stroke risk in new data. The results of this study show that the combination of Machine Learning and web-based applications has the potential to support efforts to detect early stroke risk.</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <br><strong>Keyword</strong><strong>s:</strong> logistic regression; machine learning; prediction; streamlit; stroke.</p> <p>&nbsp;</p> <p>&nbsp;</p> <p><strong>Abstrak:</strong> Stroke adalah salah satu penyebab utama kematian dan kecacatan di berbagai belahan dunia, termasuk di Indonesia. Seiring perkembangan teknologi digital, penggunaan Machine Learning dalam bidang kesehatan semakin berkembang, salah satunya dalam upaya memprediksi terjadinya penyakit stroke. Penelitian ini bertujuan untuk mengimplementasikan algoritma Logistic Regression dalam memprediksi kemungkinan seseorang mengalami stroke berdasarkan data dari dataset Brain Stroke. Proses penelitian meliputi preprocessing data (penanganan missing value, normalisasi, dan label encoding), membagi data menjadi 80% data latih dan 20% data uji, serta pelatihan model. Model kemudian dievaluasi menggunakan beberapa ukuran seperti akurasi, precision, recall, F1-score, dan ROC-AUC, serta confusion matrix. Hasil penelitian menunjukkan bahwa Logistic Regression mampu memberikan hasil klasifikasi penyakit stroke dengan akurasi sebesar 82,4%, precision 80,1%, recall 78,6%, F1-score 79,3%, dan nilai ROC-AUC sebesar 0,87. Kemudian, model tersebut diintegrasikan ke dalam aplikasi yang menggunakan Streamlit, sehingga dapat digunakan secara interaktif untuk memprediksi risiko stroke pada data baru. Hasil penelitian ini menunjukkan bahwa kombinasi Machine Learning dan aplikasi berbasis web berpotensi mendukung upaya deteksi dini risiko stroke.</p> <p>&nbsp;</p> <p><strong>Kata kunci:</strong> logistic regression; machine learning; prediksi; streamlit; stroke.</p> Ishiqa Rana Aphrodita, Ika Nur Fajri, Agung Nugroho Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4161 Tue, 30 Sep 2025 00:00:00 +0000 USE OF TASK-CENTERED SYSTEM DESIGN IN THE INTERFACE DESIGN OF THE POPULATION DEMOGRAPHIC DATA INFORMATION SYSTEM https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4186 <p><strong>Abstract:</strong> The rapid development of information and communication technology has prompted the government to provide digital-based services, including in the management of demographic data. This study aims to apply the Task-Centered System Design (TCSD) method in designing the Muara Enim Regency Demographic Data Information System. The TCSD method was chosen to ensure that the prototype design process was systematic and focused on user needs and tasks. The research stages included identification, user-centered needs analysis, scenario-based design, and walkthrough evaluation. The designed prototype supports several main tasks, including viewing demographic statistics, searching for specific data, submitting data download requests, and contacting the admin. The evaluation was conducted through online usability testing using the Maze platform with the System Usability Scale (SUS) instrument involving 13 respondents. The evaluation results showed an average SUS score of 78.5, which falls into the “good” category. This confirms that the interface design has met usability standards, is user-friendly, and is capable of supporting user needs in accessing and managing demographic data. Thus, the application of the TCSD method has proven to be effective in producing an interface design that is focused on user tasks and can be the basis for further system development.</p> <p><br><strong>Keywords:</strong> system usability scale; task centered system design; user interface </p> Muhammad Azmi Zaky, Allsela Meiriza, Dinda Lestarini, Pacu Putra, Nabila Rizki Oktadini Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4186 Tue, 30 Sep 2025 00:00:00 +0000 DESIGN AND CONSTRUCTION OF SOIL MOISTURE DETECTION TOOL USING ANDROID BASED DECISION TREE ALGORITHM https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4194 <p><strong>Abstract: </strong>Soil moisture is an important factor in determining the watering needs of plants for optimal growth. Therefore, accurate monitoring of soil moisture is necessary. This research aims to design and build a soil moisture detection tool based on the Decision Tree algorithm with the support of the YL-69 sensor for humidity measurement and the DHT11 sensor for temperature measurement to increase data accuracy. This system uses NodeMCU ESP8266 as a microcontroller and is integrated with an Android application as a user interface. Sensor interpretation data is analyzed using the Decision Tree algorithm to determine soil conditions (dry, damp or wet). The test results show an accuracy level of 95% from 300 data samples. Thus, this system is able to detect soil moisture effectively and can help increase the efficiency of crop management on a household and commercial agricultural scale.</p> <p>&nbsp;</p> <p><strong>Keywords:</strong> agriculture, android, decision tree algorithm, sensors, soil moisture detection</p> <p>&nbsp;</p> Mirwan Aziz Ritonga, Lili Tanti Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4194 Tue, 30 Sep 2025 00:00:00 +0000