https://jurnal.stmikroyal.ac.id/index.php/jurteksi/issue/feed JURTEKSI (jurnal Teknologi dan Sistem Informasi) 2025-12-12T02:34:37+00:00 Febby Madonna Yuma jurteksi@gmail.com Open Journal Systems <p>JURTEKSI (jurnal Teknologi dan Sistem Informasi) is a scientific journal which is published by Lembaga <strong>Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran</strong>. &nbsp;The journal is published four times a year in December, Maret, Juni, and September. This journal contains a collection of research in information technology and computer system written by researchers, academicians, professionals, and practitioners</p> <p>JURTEKSI with <a href="http://issn.pdii.lipi.go.id/issn.cgi?daftar&amp;1415194492&amp;&amp;">ISSN 2407-1811 (printed)</a> and ISSN <a href="http://issn.pdii.lipi.go.id/issn.cgi?daftar&amp;1488971273&amp;&amp;">2550-0201 (online)</a> has been accredited with <strong>3rd</strong> grade by the Indonesian Ministry of Education and Culture decision Number<a href="https://drive.google.com/file/d/1VGa21z2-zizEPFw5pJraaDjIwFE8Hp7N/view?usp=sharing"> B/2493/E5/E5.2.1/2019</a> which is valid for five years since enacted from <strong>volume 8 number 2 (November 2022)</strong></p> <p>DOI PREFIX (by Crossref):&nbsp;10.33330/jurteksi</p> <p><strong><img src="/public/site/images/jurnalRoyal/RJI1.gif" alt="" width="10%" height="20%">&nbsp; &nbsp;<a href="https://search.crossref.org/?q=2622-3813" target="_blank" rel="noopener"><img src="/public/site/images/jurnalRoyal/crossref1.gif" alt="" width="10%" height="20%"></a><a href="https://scholar.google.com/citations?user=oK4C74gAAAAJ&amp;hl=id;view_op=list_works&amp;gmla=AJsN-F7d6M7NGmTFHK0mxBA3eH1q6CwD2rxLdv-Q1n2dQXtb4pXXsV3bPtLZHU1_Vkl9Ug9dLb7WVudRcxYwMyuMzTCD533nxDdtWiqs1sURmYD4O4adIw0" target="_self"><img src="/public/site/images/jurnalRoyal/GOOGLESCHOLAR1.gif" alt=""></a>&nbsp;<a href="https://portal.issn.org/resource/ISSN/2622-3813" target="_self"><img src="/public/site/images/jurnalRoyal/ROAD2.gif" alt="" width="10%" height="20%"></a>&nbsp;<a href="https://onesearch.id/Repositories/Repository?library_id=1760" target="_self"><img src="/public/site/images/jurnalRoyal/onesearch.gif" alt=""></a>&nbsp;<a href="http://garuda.ristekdikti.go.id/journal/view/13850" target="_self"><img src="/public/site/images/jurnalRoyal/garuda1.gif" alt="" width="10%" height="20%"></a>&nbsp;<a href="https://portal.issn.org/resource/ISSN/2622-3813" target="_self"><img src="/public/site/images/jurnalRoyal/ISSN1.gif" alt="" width="10%" height="20%"></a></strong></p> https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4113 IMPLEMENTATION OF DALY BMS AND MODULXHM604 AS A BATTERY PACK FOR ECGO2 ELECTRIC MOTORCYCLES TO IMPROVE SAFETY, CAPACITY AND FAST CHARGING 2025-12-04T04:15:41+00:00 Muhammad Amin stmikroyal13@gmail.com Ricki Ananda rickianandaa@gmail.com <p><strong>Abstrack</strong><strong>:</strong> This research aims to improve battery performance and safety on the ECGO2 electric motorcycle by re-assembling the battery system using 18650 lithium cells, Daly BMS 13S/7A battery management system, and XH-M604 module. The configuration used is 13S5P (65 cells), resulting in a total voltage of 48.1 V and a capacity of 14 Ah, or equivalent to 673.4 Wh of energy. Compared to the ECGO2 built-in battery that requires 4-7 hours of charging time, this system is able to speed up charging to ±1.6 hours using a 7 A current charger. Test results using an oscilloscope show that the voltage of the assembled battery is more stable under load than that of a single battery, with minimal ripple. The estimated operating time of an 800 W electric motor using a 673.4 Wh battery is about 50 minutes. To achieve 2 hours of operation, the 13S10P configuration or energy-saving mode (400-500 W) can be used. The system is also more cost-effective at Rp2,678 per Wh compared to the manufacturer's version of Rp4,464 per Wh, as well as improved safety against leakage and overheating.</p> <p><strong>Keywords:</strong> 18650 lithium battery; daly bms; electric motorcycle; fast charging.</p> <p>&nbsp;</p> <p><strong>Abstrak:</strong> Penelitian ini bertujuan untuk meningkatkan performa dan keamanan baterai pada sepeda motor listrik ECGO2 dengan merakit ulang sistem baterai menggunakan sel lithium 18650, sistem manajemen baterai Daly BMS 13S/7A, dan modul XH-M604. Konfigurasi yang digunakan adalah 13S5P (65 sel), menghasilkan tegangan total 48,1 V dan kapasitas 14 Ah, atau setara dengan energi 673,4 Wh. Dibandingkan baterai bawaan ECGO2 yang memerlukan waktu pengisian 4–7 jam, sistem ini mampu mempercepat pengisian menjadi ±1,6 jam menggunakan charger arus 7 A. Hasil pengujian menggunakan osiloskop menunjukkan bahwa tegangan baterai rakitan lebih stabil di bawah beban dibandingkan baterai tunggal, dengan ripple minimal. Estimasi lama pengoperasian motor listrik 800 W menggunakan baterai 673,4 Wh adalah sekitar 50 menit. Untuk mencapai 2 jam pengoperasian, dapat digunakan konfigurasi 13S10P atau mode hemat energi (400–500 W). Sistem ini juga lebih hemat biaya dengan efisiensi harga Rp2.678 per Wh dibandingkan Rp4.464 per Wh versi pabrikan, serta meningkatkan keamanan terhadap kebocoran dan panas berlebih.</p> <p><strong>Kata kunci:</strong> baterai lithium 18650; daly bms; sepeda motor listrik; pengisian daya cepat.</p> 2025-12-04T00:00:00+00:00 Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4237 GRAFANA-BASED DOMAIN EXPIRATION AND SSL CERTIFICATE MONITORING SYSTEM FOR PREVENTIVE SECURITY 2025-12-09T05:55:21+00:00 Nur Asyiyah nurasyiyah@upi.edu Hafiyyan Putra Pratama hafiyyan@upi.edu <p><strong>Abstract:</strong> Manual management of domain validity periods and SSL certificates is prone to human error and can cause service disruptions, as was the case at PT XYZ. A reactive approach that relies on vendor notifications has proven to be insufficient to ensure operational continuity. This research aims to design and implement an automated monitoring system to transform this manual approach into a preventive and proactive security framework. The method used is the implementation of an open-source stack consisting of Prometheus to collect metrics from specialized exporters (Blackbox and Domain Exporter), and Grafana for informative centralized dashboard visualization. The system is also integrated with early warning notifications via Telegram for rapid incident response. The result is a functional system with a centralized dashboard that visually displays the remaining validity period of assets using color markers (green for safe status, yellow for early warning, and red for critical status). System testing showed very high accuracy, reaching 100% for domains (MAE 0 days) and 99.45% for SSL certificates (MAE 1.0 days). This system has successfully transformed manual processes into automated and preventive ones, significantly mitigating the risk of human error and ensuring the reliability of digital services.</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <br><strong>Keyword</strong><strong>s:</strong> domain; grafana; monitoring; prometheus; SSL certificate.</p> <p>&nbsp;</p> <p>&nbsp;</p> <p><strong>Abstrak:</strong> Pengelolaan manual masa berlaku domain dan sertifikat SSL rentan terhadap <em>human error</em> dan dapat menyebabkan gangguan layanan, seperti yang pernah terjadi di PT XYZ. Pendekatan reaktif yang mengandalkan notifikasi<em> vendor</em> terbukti tidak lagi memadai untuk menjamin kontinuitas operasional. Penelitian ini bertujuan merancang dan mengimplementasikan sistem pemantauan otomatis untuk mentransformasi pendekatan manual tersebut menjadi kerangka kerja keamanan yang preventif dan proaktif. Metode yang digunakan adalah implementasi <em>stack open-source</em> yang terdiri dari Prometheus untuk mengumpulkan metrik dari <em>exporter</em> spesialis (Blackbox dan Domain Exporter), serta Grafana untuk visualisasi dasbor terpusat yang informatif. Sistem ini juga diintegrasikan dengan notifikasi peringatan dini melalui Telegram untuk respons insiden yang cepat. Hasilnya adalah sebuah sistem fungsional dengan <em>dashboard</em> terpusat yang menampilkan sisa masa berlaku aset secara visual menggunakan penanda warna (hijau untuk status aman, kuning untuk peringatan dini, dan merah untuk status kritis). Pengujian sistem menunjukkan akurasi yang sangat tinggi, mencapai 100% untuk domain (MAE 0 hari) dan 99.45% untuk sertifikat SSL (MAE 1.0 hari). Sistem ini berhasil mengubah proses manual menjadi otomatis dan preventif, secara signifikan memitigasi risiko <em>human error</em> dan menjamin keandalan layanan digital.</p> <p>&nbsp;</p> <p><strong>Kata kunci:</strong> domain; grafana; pemantauan; prometheus; sertifikat SSL.</p> 2025-12-09T05:50:49+00:00 Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4205 ANALYSIS OF THE ACCEPTANCE OF THE SINAGA ATTENDANCE APPLICATION AT SMA NEGERI 1 JATILAWANG USING THE TECHNOLOGY ACCEPTANCE MODEL (TAM) 2025-12-11T08:24:53+00:00 Arbangi Puput Sabaniyah arbangipuputsabaniyah20@gmail.com Ika Romadhoni Yunita ikarom@amikompurwokerto.ac.id Pungkas Subarkah subarkah@amikompurwokerto.ac.id <p>This study analyzes the acceptance of teachers and ASN employees of the SINAGA (Sistem Informasi Layanan Kepegawaian) attendance application at SMA Negeri 1 Jatilawang using a modified Technology Acceptance Model (TAM). The model was extended by incorporating two external variables: Information Quality and Complexity. This explanatory quantitative research employed the Structural Equation Modeling–Partial Least Square (SEM-PLS) method involving 60 respondents who are civil servants, consisting of teachers and administrative staff. The results reveal that Information Quality has a positive and significant influence on both Perceived Usefulness (PU) and Perceived Ease of Use (PEOU), while Complexity does not show a significant effect on either variable. Furthermore, PEOU and PU have a positive impact on Attitude Toward Use (ATU), which subsequently affects Behavioral Intention to Use (BIU). Behavioral intention, in turn, strongly influences Actual Use (AU). These findings indicate that teachers’ acceptance of the SINAGA digital attendance system in educational settings is primarily driven by information quality and users’ positive attitudes rather than by system complexity. Theoretically, this study contributes to the expansion of TAM application in the educational context. Practically, it provides valuable insights for improving the effectiveness of SINAGA implementation through better information quality and enhanced user experience.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</p> 2025-12-11T00:00:00+00:00 Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4160 IMPLEMENTATION OF RANDOM FOREST CLASSIFIER FOR STUDENT GRADUATION CLASSIFICATION 2025-12-12T01:30:59+00:00 Bazil Zaidan Putra bazilzputra@students.amikom.ac.id Ika Nur Fajri fajri@amikom.ac.id Agung Nugroho agungnugroho@amikom.ac.id <p><strong>Abstract:</strong> Higher education plays an essential role in improving human resource quality, one of which is through the institution’s ability to monitor and predict student graduation outcomes. This study does not focus on a specific university but utilizes the publicly available Students Performance in Exams dataset from Kaggle, consisting of 1,000 student records containing mathematics, reading, and writing scores, along with demographic attributes such as gender, parental education level, lunch type, and test preparation participation. The data were processed through a feature engineering stage by adding an <em>average score</em> variable as an early indicator of graduation status. A predictive model was developed using the Random Forest Classifier, achieving an accuracy of 94.5%. The final model was integrated into a Streamlit-based web application to provide an accessible tool for academic stakeholders. The results indicate that the proposed model can serve as an effective decision-support tool for early evaluation of students’ likelihood of graduation.</p> <p><br><strong>Keyword</strong><strong>s:</strong> prediction; random forest classifier, streamlit, student graduation.</p> <p>&nbsp;</p> <p>&nbsp;</p> <p><strong>Abstrak:</strong> Pendidikan tinggi memegang peran penting dalam peningkatan kualitas sumber daya manusia, salah satunya melalui kemampuan institusi dalam memantau dan memprediksi tingkat kelulusan mahasiswa. Penelitian ini tidak berfokus pada perguruan tinggi tertentu, melainkan menggunakan dataset publik Students Performance in Exams dari Kaggle yang berisi 1.000 data mahasiswa, terdiri atas nilai matematika, membaca, menulis, serta atribut demografis seperti gender, tingkat pendidikan orang tua, jenis makan siang, dan partisipasi kursus persiapan. Data diolah melalui tahap <em>feature engineering</em> dengan menambahkan variabel <em>average score</em> sebagai indikator awal kelulusan. Model prediksi dibangun menggunakan algoritma Random Forest Classifier, yang menghasilkan tingkat akurasi sebesar 94,5%. Model ini kemudian diimplementasikan ke dalam aplikasi web berbasis Streamlit untuk memberikan layanan prediksi yang mudah diakses oleh pihak akademik. Hasil penelitian menunjukkan bahwa model mampu digunakan sebagai alat pendukung keputusan untuk melakukan evaluasi dini terhadap potensi kelulusan mahasiswa.</p> <p>&nbsp;</p> <p><strong>Kata kunci:</strong> kelulusan mahasiswa; prediksi; random forest classifier; streamlit.</p> 2025-12-12T00:00:00+00:00 Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4192 COMPARISON OF DECISION TREE AND RANDOM FOREST ALGORITHMS FOR ASTHMA 2025-12-12T01:59:53+00:00 Wisriani Lase wisrianilase@gmail.com Robet Robet wisrianilase@gmail.com Hendri Hendri wisrianilase@gmail.com <p><strong>Abstract:</strong> Asthma is a chronic respiratory disease that affects millions of people worldwide, making early detection crucial to prevent complications. This study aims to compare the performance of the Decision Tree and Random Forest algorithms in classifying asthma based on clinical symptom data. The data were processed through feature selection and model training stages, then evaluated using accuracy, precision, recall, and F1-score<em>.</em>The experimental analysis revealed that the Random Forest algorithm surpassed the Decision Tree in all metrics, achieving 95.19% accuracy, 90.43% precision, 95.00% recall, and 93.00% F1-score. In contrast, the Decision Tree obtained 89.14% accuracy, 90.60% precision, 88.70% recall, and 89.70% F1-score. These results suggest that Random Forest is more robust and dependable, especially in managing complex and imbalanced medical datasets.</p> <p>&nbsp;</p> <p><strong>Keyword</strong><strong>s:</strong> asthma detection; decision tree; random forest; machine learning.</p> <p>&nbsp;</p> <p>&nbsp;</p> <p><strong>Abstrak:</strong> Asma merupakan penyakit pernapasan kronis yang memengaruhi jutaan orang di seluruh dunia sehingga deteksi dini sangat penting untuk mencegah komplikasi. Penelitian ini bertujuan membandingkan kinerja algoritma Decision Tree dan Random Forest dalam mengklasifikasikan asma berdasarkan data gejala klinis. Data diproses melalui tahapan seleksi fitur dan pelatihan model, kemudian dievaluasi menggunakan akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa Random Forest memberikan performa terbaik dengan akurasi 90.43%, presisi 95.00%, recall 95.00%, dan F1-score 93.00%. Sebaliknya, Decision Tree memperoleh akurasi 89.14%, presisi 90.60%, recall 88.70%, dan F1-score 89.70%. Hasil ini menunjukkan bahwa Random Forest lebih kuat dan dapat diandalkan, terutama dalam mengelola kumpulan data medis yang kompleks dan tidak seimbang.</p> <p>&nbsp;</p> <p><strong>Kata kunci:</strong> deteksi asma; decision tree; random forest; pembelajaran mesin.</p> 2025-12-12T01:50:56+00:00 Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4238 NAÏVE BAYES-BASED STUDENT ACHIEVEMENT PREDICTION SYSTEM 2025-12-12T02:19:21+00:00 Fadillah Angreani 2243004@wicida.ac.id Heny Pratiwi 2243004@wicida.ac.id Muhammad Ibnu Saad 2243004@wicida.ac.id <p><strong>Abstract:</strong> SMP Muhammadiyah 5 Samarinda still relies on manual evaluation with limited data analysis tools in predicting student academic achievement. This study aims develop a system for predicting the learning achievement of students at SMP Muhammadiyah 5 Samarinda using the Naive Bayes classification method. The dataset used consists of 192 student exam scores covering academic scores, attendance, parents’ education and income, and living conditions as independent variables, while the dependent variable is the achievement label (achieved or not achieved). The preprocessing stage includes label normalization, feature selection, and median imputation to handle missing data. The dataset was divided into 75% training data and 25%. The model was implemented as a pipeline consisting of a median imputer and a Gaussian Naive Bayes classifier. The evaluation results showed that the model achieved an accuracy of 79.2%, with a perfect recall value (1.00) in the high-achieving class and (0.64) in the low-achieving class. This shows that the model is quite effective in identifying high-achieving students. The trained model was then integrated into a Flask-based web application, which enables online predictions through a simple form interface, facilitating contextual interpretation. This system is expected to assist in educational decision-making by helping teachers identify students’ achievement levels early on and design more targeted learning interventions.</p> <p><br><strong>Keyword</strong><strong>s:</strong> academic performance; educational data mining; naive bayes; prediction system; student achievement</p> <p>&nbsp;</p> <p>&nbsp;</p> <p><strong>Abstrak:</strong> SMP Muhammadiyah 5 Samarinda&nbsp;masih bergantung pada evaluasi manual dengan&nbsp; alat analisis data terbatas&nbsp;dalam melakukan&nbsp;prediksi prestasi akademik siswa. Penelitian ini bertujuan mengembangkan sistem prediksi prestasi belajar siswa SMP Muhammadiyah 5 Samarinda menggunakan metode klasifikasi Naive Bayes. Dataset yang digunakan terdiri atas 192 data nilai ujian siswa yang mencakup skor akademik, kehadiran, pendidikan dan pendapatan orang tua, serta kondisi tempat tinggal sebagai variabel independen, sedangkan variabel dependen berupa label prestasi (berprestasi atau tidak berprestasi). Tahap preprocessing meliputi normalisasi label, seleksi fitur, serta imputasi median untuk menangani data yang hilang. Dataset dibagi menjadi 75% data latih dan 25%. Model diimplementasikan dalam bentuk pipeline yang terdiri atas median imputer dan Gaussian Naive Bayes classifier. Hasil evaluasi menunjukkan bahwa model mencapai akurasi sebesar 79,2%, dengan nilai recall sempurna (1,00) pada kelas berprestasi dan lebih rendah (0,64) pada kelas tidak berprestasi. Hal ini menunjukkan bahwa model cukup efektif dalam mengidentifikasi siswa berprestasi. Model yang telah dilatih kemudian diintegrasikan ke dalam aplikasi web berbasis Flask, yang memungkinkan prediksi secara daring melalui antarmuka formulir sederhana untuk mendukung interpretasi kontekstual. Sistem ini diharapkan dapat membantu untuk pengambilan keputusan dalam pendidikan dengan membantu guru mengidentifikasi tingkat prestasi siswa sejak dini dan merancang intervensi pembelajaran yang lebih terarah.</p> <p>&nbsp;</p> <p><strong>Kata kunci:</strong> prestasi akademik; penambangan data Pendidikan; naive bayes; sistem prediksi; prestasi siswa</p> 2025-12-12T02:14:56+00:00 Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi) https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4247 ANALYZING STUDENTS’ EXPERIENCE IN LMS SPOT UPI USING THE UEQ 2025-12-12T02:34:37+00:00 Fairuz Azka Azhari azkaazhari@upi.edu Asep Nuryadin asep.nuryadin@upi.edu Muhammad Dzikri Ar Ridlo dzikri.ar@upi.edu <p><strong>Abstract:</strong> The rapid expansion of digital learning environments has increased students’ reliance on Learning Management Systems (LMS), including SPOT UPI. However, limited studies have examined the platform’s overall user experience across all User Experience Questionnaire (UEQ) dimensions. This study aims to evaluate the user experience (UX) of SPOT UPI, identify its strengths and weaknesses, and provide recommendations for system improvement. A quantitative-dominant mixed-method design was applied, involving 81 student respondents for the UEQ survey and two participants for follow-up semi-structured interviews selected through purposive sampling. The UEQ data were analyzed to generate mean scores for six UX dimensions, while interview data were thematically analyzed to support the interpretation of quantitative findings. The results indicate that Perspicuity (1.05) and Efficiency (0.78) achieved the highest scores, reflecting adequate clarity and functionality. In Contrast, Stimulation (0.50) and Novelty (-0.15) were the lowest, indicating limited engagement and innovation. Overall, pragmatic quality (0.84) outperformed hedonic quality (0.17), suggesting that users value functionality more than enjoyment. In conclusion, SPOT UPI is generally usable but lacks aesthetic appeal, emotional engagement, and innovative features, highlighting the need for interface redesign and performance optimization to enhance the overall learning experience.</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <br><strong>Keyword</strong><strong>s:</strong> learning management system; user experience; user experience questionnaire</p> <p>&nbsp;</p> <p>&nbsp;</p> <p><strong>Abstrak:</strong> Perkembangan pembelajaran digital membuat mahasiswa semakin bergantung pada Learning Management System (LMS), termasuk SPOT UPI. Meski digunakan secara luas, evaluasi pengalaman pengguna secara komprehensif berdasarkan seluruh dimensi User Experience Questionnaire (UEQ) masih belum banyak dilakukan. Penelitian ini bertujuan untuk mengevaluasi user experience (UX) pada SPOT UPI, mengidentifikasi keunggulan dan kelemahannya, serta memberikan rekomendasi perbaikan sistem. Penelitian menggunakan desain penelitian mixed-method dominan kuantitatif, melibatkan 81 responden pada survei UEQ dan dua partisipan pada wawancara semi-terstruktur yang dipilih melalui purposive sampling. Data UEQ dianalisis untuk memperoleh nilai rata-rata pada enam dimensi UX, sedangkan data wawancara dianalisis secara tematik untuk memperkaya interpretasi temuan kuantitatif. Hasil menunjukkan bahwa Perspicuity (1,05) dan Efficiency (0,78) menjadi dimensi dengan skor tertinggi, mencerminkan bahwa SPOT UPI mudah dipahami dan cukup membantu dalam menyelesaikan tugas. Sebaliknya, Stimulation (0,50) dan Novelty (-0,15) memperoleh skor terendah, menandakan rendahnya tingkat keterlibatan dan inovasi yang dirasakan pengguna. Secara keseluruhan, pragmatic quality (0,84) lebih tinggi dibandingkan hedonic quality (0,17), menunjukkan bahwa pengguna lebih mengutamakan aspek fungsional daripada kenyamanan emosional. Temuan tersebut mengindikasikan bahwa SPOT UPI sudah layak digunakan secara fungsional, tetapi masih memerlukan peningkatan pada interface, pengalaman visual, dan fitur inovatif agar dapat memberikan pengalaman belajar digital yang lebih menarik dan optimal.</p> <p>&nbsp;</p> <p><strong>Kata kunci:</strong> learning management system; pengalaman pengguna; user experience questionnaire</p> 2025-12-12T02:29:14+00:00 Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi)