https://jurnal.stmikroyal.ac.id/index.php/jurteksi/issue/feedJURTEKSI (jurnal Teknologi dan Sistem Informasi)2026-01-13T08:50:06+00:00Febby Madonna Yumajurteksi@gmail.comOpen Journal Systems<p>JURTEKSI (jurnal Teknologi dan Sistem Informasi) is a scientific journal which is published by Lembaga <strong>Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran</strong>. The journal is published four times a year in December, Maret, Juni, and September. This journal contains a collection of research in information technology and computer system written by researchers, academicians, professionals, and practitioners</p> <p>JURTEKSI with <a href="http://issn.pdii.lipi.go.id/issn.cgi?daftar&1415194492&&">ISSN 2407-1811 (printed)</a> and ISSN <a href="http://issn.pdii.lipi.go.id/issn.cgi?daftar&1488971273&&">2550-0201 (online)</a> has been accredited with <strong>3rd</strong> grade by the Indonesian Ministry of Education and Culture decision Number<a href="https://drive.google.com/file/d/1VGa21z2-zizEPFw5pJraaDjIwFE8Hp7N/view?usp=sharing"> B/2493/E5/E5.2.1/2019</a> which is valid for five years since enacted from <strong>volume 8 number 2 (November 2022)</strong></p> <p>DOI PREFIX (by Crossref): 10.33330/jurteksi</p> <p><strong><img src="/public/site/images/jurnalRoyal/RJI1.gif" alt="" width="10%" height="20%"> <a href="https://search.crossref.org/?q=2622-3813" target="_blank" rel="noopener"><img src="/public/site/images/jurnalRoyal/crossref1.gif" alt="" width="10%" height="20%"></a><a href="https://scholar.google.com/citations?user=oK4C74gAAAAJ&hl=id;view_op=list_works&gmla=AJsN-F7d6M7NGmTFHK0mxBA3eH1q6CwD2rxLdv-Q1n2dQXtb4pXXsV3bPtLZHU1_Vkl9Ug9dLb7WVudRcxYwMyuMzTCD533nxDdtWiqs1sURmYD4O4adIw0" target="_self"><img src="/public/site/images/jurnalRoyal/GOOGLESCHOLAR1.gif" alt=""></a> <a href="https://portal.issn.org/resource/ISSN/2622-3813" target="_self"><img src="/public/site/images/jurnalRoyal/ROAD2.gif" alt="" width="10%" height="20%"></a> <a href="https://onesearch.id/Repositories/Repository?library_id=1760" target="_self"><img src="/public/site/images/jurnalRoyal/onesearch.gif" alt=""></a> <a href="http://garuda.ristekdikti.go.id/journal/view/13850" target="_self"><img src="/public/site/images/jurnalRoyal/garuda1.gif" alt="" width="10%" height="20%"></a> <a href="https://portal.issn.org/resource/ISSN/2622-3813" target="_self"><img src="/public/site/images/jurnalRoyal/ISSN1.gif" alt="" width="10%" height="20%"></a></strong></p>https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4113IMPLEMENTATION OF DALY BMS AND MODULXHM604 AS A BATTERY PACK FOR ECGO2 ELECTRIC MOTORCYCLES TO IMPROVE SAFETY, CAPACITY AND FAST CHARGING2025-12-04T04:15:41+00:00Muhammad Aminstmikroyal13@gmail.comRicki Anandarickianandaa@gmail.com<p><strong>Abstrack</strong><strong>:</strong> This research aims to improve battery performance and safety on the ECGO2 electric motorcycle by re-assembling the battery system using 18650 lithium cells, Daly BMS 13S/7A battery management system, and XH-M604 module. The configuration used is 13S5P (65 cells), resulting in a total voltage of 48.1 V and a capacity of 14 Ah, or equivalent to 673.4 Wh of energy. Compared to the ECGO2 built-in battery that requires 4-7 hours of charging time, this system is able to speed up charging to ±1.6 hours using a 7 A current charger. Test results using an oscilloscope show that the voltage of the assembled battery is more stable under load than that of a single battery, with minimal ripple. The estimated operating time of an 800 W electric motor using a 673.4 Wh battery is about 50 minutes. To achieve 2 hours of operation, the 13S10P configuration or energy-saving mode (400-500 W) can be used. The system is also more cost-effective at Rp2,678 per Wh compared to the manufacturer's version of Rp4,464 per Wh, as well as improved safety against leakage and overheating.</p> <p><strong>Keywords:</strong> 18650 lithium battery; daly bms; electric motorcycle; fast charging.</p> <p> </p> <p><strong>Abstrak:</strong> Penelitian ini bertujuan untuk meningkatkan performa dan keamanan baterai pada sepeda motor listrik ECGO2 dengan merakit ulang sistem baterai menggunakan sel lithium 18650, sistem manajemen baterai Daly BMS 13S/7A, dan modul XH-M604. Konfigurasi yang digunakan adalah 13S5P (65 sel), menghasilkan tegangan total 48,1 V dan kapasitas 14 Ah, atau setara dengan energi 673,4 Wh. Dibandingkan baterai bawaan ECGO2 yang memerlukan waktu pengisian 4–7 jam, sistem ini mampu mempercepat pengisian menjadi ±1,6 jam menggunakan charger arus 7 A. Hasil pengujian menggunakan osiloskop menunjukkan bahwa tegangan baterai rakitan lebih stabil di bawah beban dibandingkan baterai tunggal, dengan ripple minimal. Estimasi lama pengoperasian motor listrik 800 W menggunakan baterai 673,4 Wh adalah sekitar 50 menit. Untuk mencapai 2 jam pengoperasian, dapat digunakan konfigurasi 13S10P atau mode hemat energi (400–500 W). Sistem ini juga lebih hemat biaya dengan efisiensi harga Rp2.678 per Wh dibandingkan Rp4.464 per Wh versi pabrikan, serta meningkatkan keamanan terhadap kebocoran dan panas berlebih.</p> <p><strong>Kata kunci:</strong> baterai lithium 18650; daly bms; sepeda motor listrik; pengisian daya cepat.</p>2025-12-04T00:00:00+00:00Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi)https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4237GRAFANA-BASED DOMAIN EXPIRATION AND SSL CERTIFICATE MONITORING SYSTEM FOR PREVENTIVE SECURITY2025-12-09T05:55:21+00:00Nur Asyiyahnurasyiyah@upi.eduHafiyyan Putra Pratamahafiyyan@upi.edu<p><strong>Abstract:</strong> Manual management of domain validity periods and SSL certificates is prone to human error and can cause service disruptions, as was the case at PT XYZ. A reactive approach that relies on vendor notifications has proven to be insufficient to ensure operational continuity. This research aims to design and implement an automated monitoring system to transform this manual approach into a preventive and proactive security framework. The method used is the implementation of an open-source stack consisting of Prometheus to collect metrics from specialized exporters (Blackbox and Domain Exporter), and Grafana for informative centralized dashboard visualization. The system is also integrated with early warning notifications via Telegram for rapid incident response. The result is a functional system with a centralized dashboard that visually displays the remaining validity period of assets using color markers (green for safe status, yellow for early warning, and red for critical status). System testing showed very high accuracy, reaching 100% for domains (MAE 0 days) and 99.45% for SSL certificates (MAE 1.0 days). This system has successfully transformed manual processes into automated and preventive ones, significantly mitigating the risk of human error and ensuring the reliability of digital services.</p> <p> <br><strong>Keyword</strong><strong>s:</strong> domain; grafana; monitoring; prometheus; SSL certificate.</p> <p> </p> <p> </p> <p><strong>Abstrak:</strong> Pengelolaan manual masa berlaku domain dan sertifikat SSL rentan terhadap <em>human error</em> dan dapat menyebabkan gangguan layanan, seperti yang pernah terjadi di PT XYZ. Pendekatan reaktif yang mengandalkan notifikasi<em> vendor</em> terbukti tidak lagi memadai untuk menjamin kontinuitas operasional. Penelitian ini bertujuan merancang dan mengimplementasikan sistem pemantauan otomatis untuk mentransformasi pendekatan manual tersebut menjadi kerangka kerja keamanan yang preventif dan proaktif. Metode yang digunakan adalah implementasi <em>stack open-source</em> yang terdiri dari Prometheus untuk mengumpulkan metrik dari <em>exporter</em> spesialis (Blackbox dan Domain Exporter), serta Grafana untuk visualisasi dasbor terpusat yang informatif. Sistem ini juga diintegrasikan dengan notifikasi peringatan dini melalui Telegram untuk respons insiden yang cepat. Hasilnya adalah sebuah sistem fungsional dengan <em>dashboard</em> terpusat yang menampilkan sisa masa berlaku aset secara visual menggunakan penanda warna (hijau untuk status aman, kuning untuk peringatan dini, dan merah untuk status kritis). Pengujian sistem menunjukkan akurasi yang sangat tinggi, mencapai 100% untuk domain (MAE 0 hari) dan 99.45% untuk sertifikat SSL (MAE 1.0 hari). Sistem ini berhasil mengubah proses manual menjadi otomatis dan preventif, secara signifikan memitigasi risiko <em>human error</em> dan menjamin keandalan layanan digital.</p> <p> </p> <p><strong>Kata kunci:</strong> domain; grafana; pemantauan; prometheus; sertifikat SSL.</p>2025-12-09T05:50:49+00:00Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi)https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4205ANALYSIS OF THE ACCEPTANCE OF THE SINAGA ATTENDANCE APPLICATION AT SMA NEGERI 1 JATILAWANG USING THE TECHNOLOGY ACCEPTANCE MODEL (TAM) 2025-12-11T08:24:53+00:00Arbangi Puput Sabaniyaharbangipuputsabaniyah20@gmail.comIka Romadhoni Yunitaikarom@amikompurwokerto.ac.idPungkas Subarkahsubarkah@amikompurwokerto.ac.id<p>This study analyzes the acceptance of teachers and ASN employees of the SINAGA (Sistem Informasi Layanan Kepegawaian) attendance application at SMA Negeri 1 Jatilawang using a modified Technology Acceptance Model (TAM). The model was extended by incorporating two external variables: Information Quality and Complexity. This explanatory quantitative research employed the Structural Equation Modeling–Partial Least Square (SEM-PLS) method involving 60 respondents who are civil servants, consisting of teachers and administrative staff. The results reveal that Information Quality has a positive and significant influence on both Perceived Usefulness (PU) and Perceived Ease of Use (PEOU), while Complexity does not show a significant effect on either variable. Furthermore, PEOU and PU have a positive impact on Attitude Toward Use (ATU), which subsequently affects Behavioral Intention to Use (BIU). Behavioral intention, in turn, strongly influences Actual Use (AU). These findings indicate that teachers’ acceptance of the SINAGA digital attendance system in educational settings is primarily driven by information quality and users’ positive attitudes rather than by system complexity. Theoretically, this study contributes to the expansion of TAM application in the educational context. Practically, it provides valuable insights for improving the effectiveness of SINAGA implementation through better information quality and enhanced user experience. </p>2025-12-11T00:00:00+00:00Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi)https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4160IMPLEMENTATION OF RANDOM FOREST CLASSIFIER FOR STUDENT GRADUATION CLASSIFICATION 2025-12-12T01:30:59+00:00Bazil Zaidan Putrabazilzputra@students.amikom.ac.idIka Nur Fajrifajri@amikom.ac.idAgung Nugrohoagungnugroho@amikom.ac.id<p><strong>Abstract:</strong> Higher education plays an essential role in improving human resource quality, one of which is through the institution’s ability to monitor and predict student graduation outcomes. This study does not focus on a specific university but utilizes the publicly available Students Performance in Exams dataset from Kaggle, consisting of 1,000 student records containing mathematics, reading, and writing scores, along with demographic attributes such as gender, parental education level, lunch type, and test preparation participation. The data were processed through a feature engineering stage by adding an <em>average score</em> variable as an early indicator of graduation status. A predictive model was developed using the Random Forest Classifier, achieving an accuracy of 94.5%. The final model was integrated into a Streamlit-based web application to provide an accessible tool for academic stakeholders. The results indicate that the proposed model can serve as an effective decision-support tool for early evaluation of students’ likelihood of graduation.</p> <p><br><strong>Keyword</strong><strong>s:</strong> prediction; random forest classifier, streamlit, student graduation.</p> <p> </p> <p> </p> <p><strong>Abstrak:</strong> Pendidikan tinggi memegang peran penting dalam peningkatan kualitas sumber daya manusia, salah satunya melalui kemampuan institusi dalam memantau dan memprediksi tingkat kelulusan mahasiswa. Penelitian ini tidak berfokus pada perguruan tinggi tertentu, melainkan menggunakan dataset publik Students Performance in Exams dari Kaggle yang berisi 1.000 data mahasiswa, terdiri atas nilai matematika, membaca, menulis, serta atribut demografis seperti gender, tingkat pendidikan orang tua, jenis makan siang, dan partisipasi kursus persiapan. Data diolah melalui tahap <em>feature engineering</em> dengan menambahkan variabel <em>average score</em> sebagai indikator awal kelulusan. Model prediksi dibangun menggunakan algoritma Random Forest Classifier, yang menghasilkan tingkat akurasi sebesar 94,5%. Model ini kemudian diimplementasikan ke dalam aplikasi web berbasis Streamlit untuk memberikan layanan prediksi yang mudah diakses oleh pihak akademik. Hasil penelitian menunjukkan bahwa model mampu digunakan sebagai alat pendukung keputusan untuk melakukan evaluasi dini terhadap potensi kelulusan mahasiswa.</p> <p> </p> <p><strong>Kata kunci:</strong> kelulusan mahasiswa; prediksi; random forest classifier; streamlit.</p>2025-12-12T00:00:00+00:00Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi)https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4192COMPARISON OF DECISION TREE AND RANDOM FOREST ALGORITHMS FOR ASTHMA2025-12-12T01:59:53+00:00Wisriani Lasewisrianilase@gmail.comRobet Robetwisrianilase@gmail.comHendri Hendriwisrianilase@gmail.com<p><strong>Abstract:</strong> Asthma is a chronic respiratory disease that affects millions of people worldwide, making early detection crucial to prevent complications. This study aims to compare the performance of the Decision Tree and Random Forest algorithms in classifying asthma based on clinical symptom data. The data were processed through feature selection and model training stages, then evaluated using accuracy, precision, recall, and F1-score<em>.</em>The experimental analysis revealed that the Random Forest algorithm surpassed the Decision Tree in all metrics, achieving 95.19% accuracy, 90.43% precision, 95.00% recall, and 93.00% F1-score. In contrast, the Decision Tree obtained 89.14% accuracy, 90.60% precision, 88.70% recall, and 89.70% F1-score. These results suggest that Random Forest is more robust and dependable, especially in managing complex and imbalanced medical datasets.</p> <p> </p> <p><strong>Keyword</strong><strong>s:</strong> asthma detection; decision tree; random forest; machine learning.</p> <p> </p> <p> </p> <p><strong>Abstrak:</strong> Asma merupakan penyakit pernapasan kronis yang memengaruhi jutaan orang di seluruh dunia sehingga deteksi dini sangat penting untuk mencegah komplikasi. Penelitian ini bertujuan membandingkan kinerja algoritma Decision Tree dan Random Forest dalam mengklasifikasikan asma berdasarkan data gejala klinis. Data diproses melalui tahapan seleksi fitur dan pelatihan model, kemudian dievaluasi menggunakan akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa Random Forest memberikan performa terbaik dengan akurasi 90.43%, presisi 95.00%, recall 95.00%, dan F1-score 93.00%. Sebaliknya, Decision Tree memperoleh akurasi 89.14%, presisi 90.60%, recall 88.70%, dan F1-score 89.70%. Hasil ini menunjukkan bahwa Random Forest lebih kuat dan dapat diandalkan, terutama dalam mengelola kumpulan data medis yang kompleks dan tidak seimbang.</p> <p> </p> <p><strong>Kata kunci:</strong> deteksi asma; decision tree; random forest; pembelajaran mesin.</p>2025-12-12T01:50:56+00:00Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi)https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4238NAÏVE BAYES-BASED STUDENT ACHIEVEMENT PREDICTION SYSTEM2025-12-12T02:19:21+00:00Fadillah Angreani2243004@wicida.ac.idHeny Pratiwi2243004@wicida.ac.idMuhammad Ibnu Saad2243004@wicida.ac.id<p><strong>Abstract:</strong> SMP Muhammadiyah 5 Samarinda still relies on manual evaluation with limited data analysis tools in predicting student academic achievement. This study aims develop a system for predicting the learning achievement of students at SMP Muhammadiyah 5 Samarinda using the Naive Bayes classification method. The dataset used consists of 192 student exam scores covering academic scores, attendance, parents’ education and income, and living conditions as independent variables, while the dependent variable is the achievement label (achieved or not achieved). The preprocessing stage includes label normalization, feature selection, and median imputation to handle missing data. The dataset was divided into 75% training data and 25%. The model was implemented as a pipeline consisting of a median imputer and a Gaussian Naive Bayes classifier. The evaluation results showed that the model achieved an accuracy of 79.2%, with a perfect recall value (1.00) in the high-achieving class and (0.64) in the low-achieving class. This shows that the model is quite effective in identifying high-achieving students. The trained model was then integrated into a Flask-based web application, which enables online predictions through a simple form interface, facilitating contextual interpretation. This system is expected to assist in educational decision-making by helping teachers identify students’ achievement levels early on and design more targeted learning interventions.</p> <p><br><strong>Keyword</strong><strong>s:</strong> academic performance; educational data mining; naive bayes; prediction system; student achievement</p> <p> </p> <p> </p> <p><strong>Abstrak:</strong> SMP Muhammadiyah 5 Samarinda masih bergantung pada evaluasi manual dengan alat analisis data terbatas dalam melakukan prediksi prestasi akademik siswa. Penelitian ini bertujuan mengembangkan sistem prediksi prestasi belajar siswa SMP Muhammadiyah 5 Samarinda menggunakan metode klasifikasi Naive Bayes. Dataset yang digunakan terdiri atas 192 data nilai ujian siswa yang mencakup skor akademik, kehadiran, pendidikan dan pendapatan orang tua, serta kondisi tempat tinggal sebagai variabel independen, sedangkan variabel dependen berupa label prestasi (berprestasi atau tidak berprestasi). Tahap preprocessing meliputi normalisasi label, seleksi fitur, serta imputasi median untuk menangani data yang hilang. Dataset dibagi menjadi 75% data latih dan 25%. Model diimplementasikan dalam bentuk pipeline yang terdiri atas median imputer dan Gaussian Naive Bayes classifier. Hasil evaluasi menunjukkan bahwa model mencapai akurasi sebesar 79,2%, dengan nilai recall sempurna (1,00) pada kelas berprestasi dan lebih rendah (0,64) pada kelas tidak berprestasi. Hal ini menunjukkan bahwa model cukup efektif dalam mengidentifikasi siswa berprestasi. Model yang telah dilatih kemudian diintegrasikan ke dalam aplikasi web berbasis Flask, yang memungkinkan prediksi secara daring melalui antarmuka formulir sederhana untuk mendukung interpretasi kontekstual. Sistem ini diharapkan dapat membantu untuk pengambilan keputusan dalam pendidikan dengan membantu guru mengidentifikasi tingkat prestasi siswa sejak dini dan merancang intervensi pembelajaran yang lebih terarah.</p> <p> </p> <p><strong>Kata kunci:</strong> prestasi akademik; penambangan data Pendidikan; naive bayes; sistem prediksi; prestasi siswa</p>2025-12-12T02:14:56+00:00Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi)https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4247ANALYZING STUDENTS’ EXPERIENCE IN LMS SPOT UPI USING THE UEQ2025-12-12T02:34:37+00:00Fairuz Azka Azhariazkaazhari@upi.eduAsep Nuryadinasep.nuryadin@upi.eduMuhammad Dzikri Ar Ridlodzikri.ar@upi.edu<p><strong>Abstract:</strong> The rapid expansion of digital learning environments has increased students’ reliance on Learning Management Systems (LMS), including SPOT UPI. However, limited studies have examined the platform’s overall user experience across all User Experience Questionnaire (UEQ) dimensions. This study aims to evaluate the user experience (UX) of SPOT UPI, identify its strengths and weaknesses, and provide recommendations for system improvement. A quantitative-dominant mixed-method design was applied, involving 81 student respondents for the UEQ survey and two participants for follow-up semi-structured interviews selected through purposive sampling. The UEQ data were analyzed to generate mean scores for six UX dimensions, while interview data were thematically analyzed to support the interpretation of quantitative findings. The results indicate that Perspicuity (1.05) and Efficiency (0.78) achieved the highest scores, reflecting adequate clarity and functionality. In Contrast, Stimulation (0.50) and Novelty (-0.15) were the lowest, indicating limited engagement and innovation. Overall, pragmatic quality (0.84) outperformed hedonic quality (0.17), suggesting that users value functionality more than enjoyment. In conclusion, SPOT UPI is generally usable but lacks aesthetic appeal, emotional engagement, and innovative features, highlighting the need for interface redesign and performance optimization to enhance the overall learning experience.</p> <p> <br><strong>Keyword</strong><strong>s:</strong> learning management system; user experience; user experience questionnaire</p> <p> </p> <p> </p> <p><strong>Abstrak:</strong> Perkembangan pembelajaran digital membuat mahasiswa semakin bergantung pada Learning Management System (LMS), termasuk SPOT UPI. Meski digunakan secara luas, evaluasi pengalaman pengguna secara komprehensif berdasarkan seluruh dimensi User Experience Questionnaire (UEQ) masih belum banyak dilakukan. Penelitian ini bertujuan untuk mengevaluasi user experience (UX) pada SPOT UPI, mengidentifikasi keunggulan dan kelemahannya, serta memberikan rekomendasi perbaikan sistem. Penelitian menggunakan desain penelitian mixed-method dominan kuantitatif, melibatkan 81 responden pada survei UEQ dan dua partisipan pada wawancara semi-terstruktur yang dipilih melalui purposive sampling. Data UEQ dianalisis untuk memperoleh nilai rata-rata pada enam dimensi UX, sedangkan data wawancara dianalisis secara tematik untuk memperkaya interpretasi temuan kuantitatif. Hasil menunjukkan bahwa Perspicuity (1,05) dan Efficiency (0,78) menjadi dimensi dengan skor tertinggi, mencerminkan bahwa SPOT UPI mudah dipahami dan cukup membantu dalam menyelesaikan tugas. Sebaliknya, Stimulation (0,50) dan Novelty (-0,15) memperoleh skor terendah, menandakan rendahnya tingkat keterlibatan dan inovasi yang dirasakan pengguna. Secara keseluruhan, pragmatic quality (0,84) lebih tinggi dibandingkan hedonic quality (0,17), menunjukkan bahwa pengguna lebih mengutamakan aspek fungsional daripada kenyamanan emosional. Temuan tersebut mengindikasikan bahwa SPOT UPI sudah layak digunakan secara fungsional, tetapi masih memerlukan peningkatan pada interface, pengalaman visual, dan fitur inovatif agar dapat memberikan pengalaman belajar digital yang lebih menarik dan optimal.</p> <p> </p> <p><strong>Kata kunci:</strong> learning management system; pengalaman pengguna; user experience questionnaire</p>2025-12-12T02:29:14+00:00Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi)https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4265COMPARISON OF CLUSTERING MODELS FOR GROUPING LIFESTYLE PATTERNS AND OBESITY FACTORS2025-12-22T06:07:08+00:00Khalid Al Mas Ud09031182227027@student.unsri.ac.idFathoni Fathoni09031182227027@student.unsri.ac.idHafiz Muhammad Kurniawan09031182227027@student.unsri.ac.id<p><strong>Abstract:</strong> Obesity is an escalating global health concern, with unhealthy lifestyle patterns contributing significantly to its development. This study aims to evaluate and compare three clustering techniques for categorizing lifestyle patterns and obesity-related factors: K-Means, Agglomerative Clustering, and Gaussian Mixture Model (GMM). The data used in this study is sourced from the Food Nutrition dataset, which includes variables such as dietary habits, physical activity, and socio-economic status. The three clustering methods were assessed using evaluation metrics such as Silhouette Score, Davies-Bouldin Index (DBI), and Calinski-Harabasz Index (CHI). The findings revealed that K-Means exhibited the best performance in terms of cluster separation with a Silhouette Score of 0.5559, while GMM showed better flexibility in handling more complex data. Although Agglomerative Clustering produced acceptable results, it had a higher overlap between clusters compared to the other methods. This study offers valuable insights into selecting the most appropriate clustering technique based on the data characteristics.</p> <p> <br><strong>Keyword</strong><strong>s:</strong> agglomerative; clustering; GMM; k-means; lifestyle patterns; obesity</p> <p> </p> <p><strong>Abstrak:</strong> Obesitas menjadi masalah kesehatan yang semakin meningkat di seluruh dunia, dengan pola hidup yang tidak sehat berperan besar dalam perkembangannya. Penelitian ini bertujuan untuk membandingkan tiga metode clustering dalam mengelompokkan pola gaya hidup dan faktor yang memengaruhi obesitas, yaitu K-Means, Agglomerative Clustering, dan Gaussian Mixture Model (GMM). Data yang digunakan diperoleh dari dataset Food Nutrition yang mencakup informasi terkait pola makan, aktivitas fisik, serta faktor sosial-ekonomi. Ketiga metode tersebut diuji dengan menggunakan beberapa metrik evaluasi, seperti Silhouette Score, Davies-Bouldin Index (DBI), dan Calinski-Harabasz Index (CHI). Hasil penelitian menunjukkan bahwa K-Means memiliki kinerja terbaik dalam hal pemisahan klaster, dengan nilai Silhouette Score sebesar 0.5559, sementara GMM lebih fleksibel dalam menangani data yang lebih kompleks. Meskipun Agglomerative Clustering memberikan hasil yang dapat diterima, tumpang tindih antar klaster lebih besar dibandingkan dengan kedua metode lainnya. Penelitian ini memberikan pemahaman yang lebih baik mengenai pemilihan metode clustering yang tepat berdasarkan karakteristik data yang digunakan.</p> <p> </p> <p><strong>Kata kunci:</strong> agglomerative; clustering; GMM; k-means; obesitas; pola gaya hidup</p>2025-12-22T00:00:00+00:00Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi)https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4189COMPARISON OF NAÏVE BAYES, SVM, K-NN, DECISION TREE, AND RANDOM FOREST IN SENTIMENT ANALYSIS BASED ON SEABANK APPLICATION ASPECTS2025-12-22T10:20:44+00:00Muhammad Al Fachrozimuhammadalfachrozi03@gmail.comKen Ditha Taniakenya.tania@gmail.com<p><strong>Abstract:</strong> The increasing use of digital banking applications has led to the need for a deeper understanding of user perceptions, especially through aspect-based sentiment analysis. This study aims to classify the sentiment of SeaBank app users by focusing on four main aspects: learnability, efficiency, technical issues or errors, and satisfaction. Review data totaling 1,971 comments were collected from the Google Play Store and labeled with sentiments based on the scores (ratings) given by users. The CRISP-DM approach serves as the methodological framework for this study, which includes five classification algorithms: Naïve Bayes, Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Decision Tree, and Random Forest. The evaluation results show that the SVM algorithm provides the best performance with the highest average value of the four aspects achieving accuracy of 93.91%, Precision of 91.16%, recall of 97.96% and F1-Measure of 94.33%. According to the research findings, the Support Vector Machine (SVM) algorithm provides the best performance when performing aspect-based sentiment analysis on text data from digital banking application reviews. The findings are expected to serve as a reference for the development of automated evaluation systems that rely on user opinions as the basis for decision making.</p> <p> <br><strong>Keyword</strong><strong>s:</strong> aspects; CRISP-DM; digital Banking; seabank; sentiment analysis</p> <p> </p> <p> </p> <p><strong>Abstrak:</strong> Peningkatan pemakaian aplikasi perbankan digital mendorong perlunya pemahaman yang lebih dalam mengenai persepsi pengguna, terutama melalui analisis sentimen berbasis aspek. Penelitian ini bertujuan untuk mengklasifikasikan sentimen pengguna aplikasi SeaBank dengan berfokus pada empat aspek utama: kemudahan dipelajari <em>(learnability),</em> efisiensi penggunaan <em>(efficiency),</em> kendala atau kesalahan teknis <em>(error),</em> serta tingkat kepuasan <em>(satisfaction).</em> Data ulasan berjumlah 1.971 komentar dikumpulkan dari Google Play Store dan diberi label sentimen berdasarkan skor (rating) yang diberikan oleh pengguna. Pendekatan CRISP-DM berfungsi sebagai kerangka metodologis untuk penelitian ini, yang mencakup lima algoritma klasifikasi: Naïve Bayes, Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Decision Tree, dan Random Forest. Hasil evaluasi menunjukkan bahwa algoritma SVM memberikan performa terbaik dengan nilai rata-rata dari ke empat aspek tertinggi yang mencapai <em>accuracy</em> sebesar 93.91%, <em>Precision</em> sebesar 91.16%, <em>recall</em> sebesar 97.96% dan <em>F1-Measure</em> sebesar 94.33%. Menurut temuan penelitian, algoritma Support Vector Machine (SVM) memberikan kinerja terbaik saat melakukan analisis sentimen berbasis aspek pada data teks dari ulasan aplikasi Seabank. Temuan ini diharapkan dapat menjadi referensi bagi pengembangan sistem evaluasi otomatis yang mengandalkan opini pengguna sebagai dasar pengambilan keputusan.</p> <p> </p> <p><strong>Kata kunci:</strong> Analisis Sentimen, Aspek, Bank Digital, SeaBank, CRISP-DM</p>2025-12-22T10:17:40+00:00Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi)https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4239ANALYSIS OF INTEREST IN USING BLU DEPOSIT BASED ON TAM2025-12-22T10:23:51+00:00Nathania Clarissa Pangestu2141003@wicida.ac.idHeny Pratiwi 2141003@wicida.ac.idAmelia Yusnita2141003@wicida.ac.id<p><strong>Abstract:</strong> Digital banking has brought various innovations in financial services, one of which is Blu Deposito by BCA Digital. However, the adoption rate of digital deposit services is still relatively low compared to digital payment services. This study aims to identify and analyze the factors that influence customers' intentions and actual behavior in using Blu Deposito with reference to the Technology Acceptance Model (TAM). This study aims to analyze the factors that influence customers' intentions and actual behavior in adopting Blu Deposito using the Technology Acceptance Model (TAM) framework. Data was collected through a Google Form questionnaire from 54 customers at one BCA branch and analyzed using SPSS through validity and reliability tests, descriptive analysis, and multiple regression. The results show that Behavioral Intention (BI)is significantly influenced by Perceived Ease of Use (PEOU), Perceived Usefulness (PU), and Attitude Toward Using (ATU), with PEOU as the most dominant factor. In addition, BI has a significant effect on Actual System Use (AU), which confirms the relevance of applying the TAM model in the context of digital deposit products. These findings indicate that ease of use plays a greater role than financial benefits in encouraging users to adopt Blu Deposits. This study contributes to the understanding of digital deposit adoption and provides managerial insights to improve the usability and user engagement of digital banking services.</p> <p><br><strong>Keyword</strong><strong>s:</strong> actual system use; attitude toward using; behavioral intention; perceived ease of use; perceived usefulness; technology acceptance model</p> <p> </p> <p><strong>Abstrak:</strong> Perbankan digital telah menghadirkan berbagai inovasi dalam layanan keuangan, salah satunya Blu Deposito oleh BCA Digital. Meskipun demikian, tingkat adopsi terhadap layanan deposito digital masih relatif rendah dibandingkan dengan layanan pembayaran digital. Penelitian ini bertujuan untuk mengidentifikasi dan menganalisis faktor-faktor yang memengaruhi niat serta perilaku aktual nasabah dalam menggunakan Blu Deposito dengan mengacu pada kerangka Technology Acceptance Model (TAM). Penelitian ini bertujuan untuk menganalisis faktor-faktor yang memengaruhi niat dan perilaku aktual nasabah dalam mengadopsi Blu Deposito dengan menggunakan kerangka Technology Acceptance Model (TAM). Data dikumpulkan melalui kuesioner Google Form dari 54 nasabah di satu cabang BCA dan dianalisis menggunakan SPSS melalui uji validitas, reliabilitas, analisis deskriptif, dan regresi berganda. Hasil penelitian menunjukkan bahwa Behavioral Intention (BI) dipengaruhi secara signifikan oleh Perceived Ease of Use (PEOU), Perceived Usefulness (PU), dan Attitude Toward Using (ATU), dengan PEOU sebagai faktor paling dominan. Selain itu, BI berpengaruh signifikan terhadap Actual System Use (AU), yang menegaskan relevansi penerapan model TAM pada konteks produk deposito digital. Temuan ini menunjukkan bahwa kemudahan penggunaan memiliki peran lebih besar dibandingkan manfaat finansial dalam mendorong pengguna untuk mengadopsi Blu Deposito. Penelitian ini berkontribusi terhadap pemahaman adopsi deposito digital serta memberikan wawasan manajerial untuk meningkatkan kegunaan dan keterlibatan pengguna pada layanan perbankan digital.</p> <p> </p> <p><strong>Kata kunci:</strong> actual system use; attitude toward using; behavioral intention; perceived ease of use; perceived usefulness; technology acceptance model</p> <p> </p>2025-12-22T10:23:50+00:00Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi)https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4310FORECASTING THE JAKARTA COMPOSITE INDEX USING LSTM BASED ON INDONESIAN MARKET DATA2025-12-23T01:52:35+00:00Reni Yunitareniyunita@royal.ac.idEgi Dio Bagus Sudewoegidiobagussudewo@royal.ac.idAzyana Alda Siraitazyanaalda@gmail.com<p><strong>Abstract:</strong> The capital market plays an important role in describing the economic conditions of a country, and the IHSG is used as the main indicator to observe the movement of all stocks on the Indonesia Stock Exchange. Because stock data is volatile and non-linear, the forecasting process becomes challenging, requiring methods that can capture historical patterns more accurately. This study aims to predict IHSG movements using the Long Short-Term Memory (LSTM) model to generate stable short-term predictions. Historical IHSG data was used to train the model, and accuracy was evaluated using Mean Squared Error (MSE). The results show that the model obtained an MSE 6784.0207, RMSE 82.3652 and MAPE 0.88%, indicating a relatively low prediction error rate. The visualization shows that the model's predictions are very close to the actual data, and the 60-day forecasting results show a potential increase in the IHSG of 1.05%. Thus, the LSTM model is capable of providing fairly accurate IHSG predictions and can be a useful tool for investors in analyzing short-term market movements.</p> <p><strong>Keyword</strong><strong>s:</strong> forecasting; JCI; long short term memory</p> <p> </p> <p><strong>Abstrak:</strong> Pasar modal memiliki peran penting dalam menggambarkan kondisi ekonomi suatu negara, dan IHSG digunakan sebagai indikator utama untuk melihat pergerakan seluruh saham di Bursa Efek Indonesia. Karena data saham bersifat fluktuatif dan tidak linear, proses peramalan menjadi tantangan, sehingga dibutuhkan metode yang mampu menangkap pola historis secara lebih akurat. Penelitian ini bertujuan memprediksi pergerakan IHSG menggunakan model Long Short-Term Memory (LSTM) untuk menghasilkan prediksi jangka pendek yang stabil. Data historis IHSG digunakan untuk melatih model, kemudian akurasi dievaluasi menggunakan Mean Squared Error (MSE). Hasil penelitian menunjukkan bahwa model memperoleh nilai MSE 6784.0207, RMSE 82.3652 dan MAPE 0.88% yang menandakan tingkat kesalahan prediksi relatif rendah. Visualisasi menunjukkan bahwa prediksi model sangat mendekati data aktual, dan hasil forecasting 60 hari ke depan memperlihatkan potensi kenaikan IHSG sebesar 1,05%. Dengan demikian, model LSTM mampu memberikan prediksi IHSG yang cukup akurat dan dapat menjadi alat bantu bagi investor dalam menganalisis pergerakan pasar jangka pendek.</p> <p><strong>Kata kunci:</strong> peramalan; JCI; memori jangka pendek</p>2025-12-20T00:00:00+00:00Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi)https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4293A FUZZY LOGIC BASED EVALUATION MODEL FOR THESIS TOPIC FEASIBILITY TO ENHANCE STUDENT RESEARCH RELEVANCE2025-12-30T07:53:12+00:00Rizaldiisuara01@gmail.comDewi Anggraenidewianngraeni2024123@gmail.comElly Rahayuellyrahayu68@gmail.com<p><strong>Abstract:</strong> The determination of thesis topics is a fundamental stage in academic research, yet the evaluation process remains predominantly manual and subjective. This reliance on individual lecturer perception often leads to inconsistent feasibility assessments and fails to systematically measure the topic's alignment with strategic needs. This research aims to develop a Decision Support System (DSS) model based on fuzzy logic to assess the feasibility of thesis topics objectively and systematically, focusing on enhancing the relevance of student research. The research method employed the Fuzzy Inference System (FIS) with the Sugeno method. This model was designed through literature review and FGD to establish four criteria (Topic Relevance, Difficulty Level, Idea Novelty, Reference Availability) and 81 rule bases. The model validation results against expert judgment using 15 test data showed a high accuracy rate of 91.31%, with a Mean Absolute Percentage Error (MAPE) value of 8.69%. In conclusion, this DSS model is proven to be valid and consistent, and it can be relied upon as an objective tool to improve the quality and relevance of thesis topics.</p> <p><strong>Keyword</strong><strong>s:</strong> academic evaluation; decision support system; fuzzy logic; fuzzy sugeno; thesis feasibility</p> <p> </p> <p><strong>Abstrak:</strong> Penentuan topik skripsi merupakan tahapan fundamental dalam penelitian akademik, namun proses evaluasinya hingga kini masih cenderung manual dan subjektif. Ketergantungan pada persepsi dosen secara individu sering kali menyebabkan penilaian kelayakan yang tidak konsisten serta kegagalan dalam mengukur keselarasan topik dengan kebutuhan strategis secara sistematis. Penelitian ini bertujuan mengembangkan model Sistem Pendukung Keputusan (SPK) berbasis logika fuzzy untuk menilai kelayakan topik skripsi secara objektif dan sistematis, dengan fokus pada peningkatan relevansi penelitian mahasiswa. Metode penelitian yang digunakan adalah Fuzzy Inference System (FIS) dengan metode Sugeno. Model ini dirancang melalui tinjauan pustaka dan Focus Group Discussion (FGD) untuk menetapkan empat kriteria (Relevansi Topik, Tingkat Kesulitan, Kebaruan Ide, Ketersediaan Referensi) serta 81 basis aturan. Hasil validasi model terhadap penilaian pakar menggunakan 15 data uji menunjukkan tingkat akurasi yang tinggi yaitu 91,31%, dengan nilai Mean Absolute Percentage Error (MAPE) sebesar 8,69%. Kesimpulannya, model SPK ini terbukti valid dan konsisten, serta dapat diandalkan sebagai alat objektif untuk meningkatkan kualitas dan relevansi topik skripsi.</p> <p><strong>Kata kunci:</strong> evaluasi akademik; sistem pendukung keputusan; logika fuzzy; fuzzy sugeno; kelayakan skripsi</p>2025-12-30T00:00:00+00:00Copyright (c) 2025 JURTEKSI (jurnal Teknologi dan Sistem Informasi)https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4148SELECTION OF POSYANDU CADRES IN LUBUK KILANGAN DISTRICT USING THE OPTIMAL HYBRID AHP–TOPSIS METHOD2026-01-07T01:50:27+00:00Tika Christytikachristy.royal@gmail.comSayendra Safariatikachristy.royal@gmail.com<p><strong>Abstract:</strong> Posyandu cadres play an important role in supporting community health services at the village and sub-district levels. However, the selection process for the best cadres is often carried out subjectively without clear and standardized criteria. This condition can lead to a decline in service quality and reduced cadre motivation. Therefore, a decision support system is needed to provide assessments that are objective, measurable, and accountable. This study aims to optimize the Posyandu cadre selection process in Lubuk Kilangan District through the development of a decision support system based on a hybrid method: Analytical Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The AHP method is applied to determine the weight of each selection criterion based on its level of importance through pairwise comparisons. Subsequently, TOPSIS is used to rank candidates according to their proximity to the ideal solution. The methodology includes a literature review, primary data collection through interviews and questionnaires with stakeholders (community health centers, cadres, and village officials), as well as the implementation and testing of the AHP–TOPSIS–based system.</p> <p> <br><strong>Keyword</strong><strong>s:</strong> Posyandu, Cadre, AHP, TOPSIS, Decision Support System</p> <p> </p> <p> </p> <p><strong>Abstrak:</strong> Kader Posyandu memiliki peran penting dalam mendukung layanan kesehatan masyarakat di tingkat desa dan kelurahan. Namun, proses pemilihan kader terbaik masih sering dilakukan secara subjektif tanpa acuan kriteria yang jelas dan terstandarisasi. Kondisi ini dapat mengakibatkan penurunan kualitas pelayanan serta rendahnya motivasi kader. Oleh karena itu, dibutuhkan suatu sistem penunjang keputusan yang mampu memberikan hasil penilaian yang objektif, terukur, dan dapat dipertanggungjawabkan. Penelitian ini bertujuan untuk mengoptimalkan proses pemilihan kader Posyandu di Kecamatan Lubuk Kilangan melalui pengembangan sistem penunjang keputusan berbasis metode hybrid Analytical Hierarchy Process (AHP) dan Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Metode AHP digunakan untuk menetapkan bobot masing-masing kriteria pemilihan kader berdasarkan tingkat kepentingan melalui perbandingan berpasangan. Selanjutnya, metode TOPSIS digunakan untuk melakukan pemeringkatan calon kader berdasarkan kedekatannya terhadap solusi ideal. Metode yang digunakan dalam penelitian ini mencakup studi literatur, pengumpulan data primer melalui wawancara dan kuesioner kepada stakeholder terkait (puskesmas, kader, dan perangkat desa), serta implementasi dan pengujian sistem berbasis AHP-TOPSIS.</p> <p> </p> <p><strong>Kata kunci:</strong> Posyandu, Kader, AHP, TOPSIS, Sistem Pendukung Keputusan</p>2025-12-31T00:00:00+00:00Copyright (c) 2026 JURTEKSI (jurnal Teknologi dan Sistem Informasi)https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4242WEB-BASED INVENTORY SYSTEM DEVELOPMENT WITH AGILE AT CV DAZRY HARAPAN2026-01-07T01:47:54+00:00Muhammad Hadi Saputrahadi.saputra@politeknikjambi.ac.idFebri Dristyanfebri.dristyan@politeknikjambi.ac.idDedi Handokofebri.dristyan@politeknikjambi.ac.id<p><strong>Abstract:</strong> Dazry Harapan Household Industry (IRT) is an SME in Jambi City specializing in the production of laundry perfume and previously relied on manual record-keeping using notebooks. This conventional method created several issues, including frequent stock recording errors, difficulties in preparing financial reports, delays in identifying minimum stock levels, and the absence of structured historical data. This study aims to develop a web-based digital recording system to improve efficiency, accuracy, and transparency in inventory management. The system was developed using the Agile (Scrum) methodology through three sprints covering the creation of login modules, stock and transaction recording, reporting, minimum-stock notifications, and interface refinement. System design was formulated using use case diagrams, flowcharts, database modeling, and interface prototypes based on the Laravel framework. User Acceptance Testing (UAT) demonstrated high user satisfaction, with 90% of respondents stating that the system is easy to use, 85% reporting faster administrative processes, and 95% acknowledging improved reporting accuracy. The system also increased recording efficiency by 66%—from 3 minutes to 1 minute per transaction—and reduced stock recording errors from 15% to 2% per month. The results indicate that implementing a web-based digital recording system significantly enhances the operational performance of SMEs.</p> <p> <br><strong>Keyword</strong><strong>s:</strong> SMEs, digital recording system, Agile, inventory management, Laravel.</p> <p> </p> <p><strong>Abstrak:</strong> Industri Rumah Tangga (IRT) Dazry Harapan merupakan UMKM di Kota Jambi yang bergerak pada produksi parfum laundry dan masih menggunakan sistem pencatatan manual berbasis buku tulis. Metode konvensional tersebut menimbulkan berbagai permasalahan, seperti tingginya kesalahan pencatatan stok, hambatan dalam penyusunan laporan keuangan, keterlambatan identifikasi stok minimum, serta ketiadaan rekap data historis yang terstruktur. Penelitian ini bertujuan mengembangkan sistem pencatatan digital berbasis web untuk meningkatkan efisiensi, akurasi, dan transparansi manajemen persediaan. Pengembangan dilakukan menggunakan metode Agile (Scrum) melalui tiga sprint yang mencakup pembangunan modul login, pencatatan stok, transaksi, laporan, notifikasi stok minimum, serta penyempurnaan antarmuka. Desain sistem dirumuskan menggunakan use case diagram, flowchart, perancangan database, dan prototipe antarmuka berbasis Laravel. Hasil pengujian melalui User Acceptance Test (UAT) menunjukkan tingkat penerimaan pengguna yang tinggi, yaitu 90% menilai sistem mudah digunakan, 85% merasakan percepatan proses pencatatan, dan 95% menilai laporan yang dihasilkan lebih akurat. Efisiensi waktu pencatatan meningkat sebesar 66%, dari 3 menit menjadi 1 menit per transaksi, sedangkan tingkat kesalahan pencatatan menurun dari 15% menjadi 2% per bulan. Penelitian ini membuktikan bahwa implementasi sistem pencatatan digital berbasis web mampu meningkatkan kualitas operasional UMKM secara signifikan.</p> <p> </p> <p><strong>Kata kunci:</strong> UMKM; sistem pencatatan digital; Agile; manajemen stok; Laravel;</p>2025-12-31T00:00:00+00:00Copyright (c) 2026 JURTEKSI (jurnal Teknologi dan Sistem Informasi)https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4170COMPARISON SVM, RF, BERT PUBLIC SENTIMENT DATA MBG IN X2026-01-07T02:11:34+00:00Gustri Efendigustriefendi@gmail.comRus Yandigustriefendi@gmail.comRani Apriliagustriefendi@gmail.comIrvan Amaroh Bit Taqwagustriefendi@gmail.com<p class="MsoNormal" style="text-align: justify;"><strong><span style="font-size: 11.0pt;">Abstract: </span></strong><span style="font-size: 11.0pt;">MBG is a strategic program of the Prabowo-Gibran administration. This program has become a widely discussed issue in the public. To better understand public perception of this program, sentiment analysis is necessary. This study aims to compare the performance of algorithms <em>machine learning</em> <em>SVM, RF, </em>And <em>BERT </em>with <em>preprocessing data </em>analyzing public sentiment of the MBG program in media X. The total dataset for this study was 39,858 out of 42,465 successfully crawled tweets. The research methods included data collection, <em>preprocessing data (cleaning, case folding, </em>word normalization, <em>stopword removal </em>and <em>stemming), </em>feature extraction, model training (<em>fine-tuning</em>), handling <em>class imbalance </em>with SMOTE, and evaluation using accuracy, precision, <em>recall, </em>and <em>f1-score. </em>The research results show that without SMOTE, the best performing models are BERT with 89% accuracy, SVM 87%, and RF 78.4%. After SMOTE, the best algorithms were SVM with 92.94%, BERT with 88.3%, and RF with 86.59%. The results confirmed that SVM is the best algorithm if at least<em>class imbalance. </em>BERT is the best algorithm before and after SMOTE, because BERT is more effective in capturing the nuances of language on social media, so BERT is the most recommended in MBG sentiment analysis<strong>. </strong></span></p> <p class="MsoNormal"><span lang="EN" style="font-size: 11.0pt; mso-ansi-language: EN;"><span style="mso-tab-count: 1;"> </span><br></span><strong>Keywords:</strong> sentiment analysis; machine learning; SVM, RF, and BERT</p> <p class="MsoNormal" style="text-align: center; tab-stops: 35.45pt;" align="center"><span style="font-size: 11.0pt;"> </span></p> <p class="MsoNormal" style="text-align: justify;"><strong style="mso-bidi-font-weight: normal;"><span style="font-size: 11.0pt;">Abstrak:</span></strong><span style="font-size: 11.0pt;"> <span style="color: black; mso-themecolor: text1;">MBG merupakan program strategis pemerintahan Prabowo - Gibran. Program ini menjadi isu yang banyak diperbincangkan publik. Untuk mengetahui lebih dalam persepsi masyrakat tentang program ini, perlu dilakukan analisis sentiment. </span></span><span lang="EN-ID" style="font-size: 11.0pt; color: black; mso-themecolor: text1; mso-ansi-language: EN-ID;">Penelitian ini bertujuan membandingkan kinerja algoritma <em>machine learning</em> <em>SVM, RF, </em>dan <em>BERT </em>dengan <em>preprocessing data </em>menganalisis sentiment public program MBG di media X. Total dataset penelitian ini adalah </span><span lang="IN" style="font-size: 11.0pt; color: black; mso-themecolor: text1; mso-ansi-language: IN;">39.858 dari </span><span lang="EN-ID" style="font-size: 11.0pt; color: black; mso-themecolor: text1; mso-ansi-language: EN-ID;">42.465 tweet yang berhasil di crawling. </span><span style="font-size: 11.0pt; color: black; mso-themecolor: text1;">Metode penelitian mencakup pengumpulan data, <em>preprocessing data (cleaning, case folding, </em>normalisasi kata, <em>stopword removal </em>dan <em>stemming), </em>ekstraksi fitur, pelatihan model (<em>fine-tuning</em>), penanganan <em>class imbalance </em>dengan SMOTE, </span><span lang="IN" style="font-size: 11.0pt; color: black; mso-themecolor: text1; mso-ansi-language: IN; mso-bidi-language: TH;">dan evaluasi menggunakan akurasi, presisi, <em>recall, </em>dan <em>f1-score. </em>Hasil peneltian menunjukkan, tanpa SMOTE model dengan kinerja terbaik adalah BERT dengan akurasi 89%, SVM 87%, dan RF 78,4%. Setelah SMOTE algoritma terbaik adalah SVM 92,94%, BERT 88,3% dan RF 86,59%. Hasil penelitian menegaskan bahwa SVM adalah algoritma terbaik jika minimal <em>class imbalance. </em>BERT adalah algoritma terbaik sebelum dan sesudah SMOTE, karena BERT lebih efektif dalam menangkap nuansa bahasa pada media sosial, sehingga BERT paling di rekomendasikan dalam analisis sentimen MBG</span><span lang="IN" style="font-size: 11.0pt; mso-ansi-language: IN; mso-bidi-language: TH;">.</span></p> <p class="MsoNormal" style="text-align: justify;"><span lang="IN" style="font-size: 11.0pt; mso-ansi-language: IN;"> </span></p> <p class="MsoNormal" style="text-align: justify;"><strong style="mso-bidi-font-weight: normal;"><span lang="IN" style="font-size: 11.0pt; mso-ansi-language: IN;">Kata kunci:</span></strong><span lang="IN" style="font-size: 11.0pt; mso-ansi-language: IN;"> analisis sentimen; machine learning; SVM, RF, dan BERT</span></p>2025-12-31T00:00:00+00:00Copyright (c) 2026 JURTEKSI (jurnal Teknologi dan Sistem Informasi)https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4313DIGITAL IMAGE QUALITY OPTIMIZATION USING DEEP NEURAL NETWORK2026-01-07T02:38:14+00:00Bachtiar Arifantobachtiarari@gmail.comAhmad Abdul Chamid abdul.chamid@umk.ac.idRatih Nindyasari ratih.nindyasari@umk.ac.id<p><strong>Abstract:</strong> One of the main challenges in digital image processing is limited resolution, which makes it difficult to preserve visual details when images are enlarged. Conventional methods such as <em>Bilinear Interpolation</em> are commonly used for image upscaling; however, these approaches often produce blurred images, lose fine textures, and fail to reconstruct complex visual structures. This study aims to enhance digital image resolution by employing a deep learni based approach using a <em>Low-Light Convolutional Neural Network</em> (LLCNN) built upon a <em>Deep Neural Network</em> (DNN) architecture. The dataset used in this study is the DIV2K dataset, which consists of 1,000 high-resolution images. These images were downsampled using scaling factors of ×2, ×3, and ×4 to generate paired <em>Low Resolution–High Resolution</em> (LR–HR) data for training and evaluation. The proposed LLCNN is designed to extract important features such as edges, textures, and local patterns through multiple convolutional layers, followed by non-linear mapping to reconstruct high-resolution images more accurately. Quantitative performance evaluation was conducted using the <em>Peak Signal-to-Noise Ratio</em> (PSNR) and the <em>Structural Similarity Index</em> (SSIM). Model performance was evaluated quantitatively using the Peak Signal-to-Noise Ratio (PSNR) metric. Experimental results showed that the proposed method improved image quality compared to the bilinear method. These results indicate that the deep learning based approach effectively improves image sharpness and structural fidelity, thereby demonstrating its potential for digital image resolution enhancement.</p> <p> <br><strong>Keyword</strong><strong>s:</strong> deep neural network; image resolution; low-light convolutional neural network; machine learning</p> <p> </p> <p><strong>Abstrak:</strong> Permasalahan utama dalam pengolahan citra digital adalah keterbatasan resolusi yang menyebabkan detail visual sulit dipertahankan ketika citra diperbesar. Metode konvensional seperti <em>Bilinear Interpolation</em> masih banyak digunakan, namun sering menghasilkan citra buram, kehilangan tekstur halus, serta tidak mampu merekonstruksi struktur visual yang kompleks. Penelitian ini bertujuan untuk meningkatkan kualitas resolusi citra digital dengan memanfaatkan pendekatan <em>deep learning</em> berbasis <em>Low-Light Convolutional Neural Network</em> (LLCNN) yang dibangun di atas arsitektur <em>Deep Neural Network</em> (DNN). Data yang digunakan dalam penelitian ini berasal dari dataset DIV2K, yang terdiri dari 1000 citra beresolusi tinggi. Citra tersebut diturunkan menjadi resolusi rendah menggunakan faktor <em>downsampling</em> ×2, ×3, dan ×4 untuk membentuk pasangan data <em>Low Resolution–High Resolution</em> (LR–HR) sebagai data pelatihan dan pengujian. LLCNN dirancang untuk mengekstraksi fitur-fitur penting seperti tepi, tekstur, dan pola lokal melalui beberapa lapisan konvolusi, kemudian melakukan pemetaan non-linear guna merekonstruksi citra resolusi tinggi secara lebih presisi. Evaluasi performa model dilakukan secara kuantitatif menggunakan metrik <em>Peak Signal-to-Noise Ratio</em> (PSNR). Hasil eksperimen menunjukkan bahwa metode yang diusulkan mampu meningkatkan kualitas citra dibandingkan metode bilinear. Hasil ini membuktikan bahwa pendekatan berbasis deep learning efektif dalam meningkatkan ketajaman dan kesesuaian struktur citra digital.</p> <p> </p> <p><strong>Kata kunci:</strong> deep neural network; low-light convolutional neural network; machine learning; resolusi citra</p>2025-12-31T00:00:00+00:00Copyright (c) 2026 JURTEKSI (jurnal Teknologi dan Sistem Informasi)https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4338OPTIMIZING RETRIEVAL-AUGMENTED GENERATION FOR DOMAIN-SPECIFIC KNOWLEDGE SYSTEMS THROUGH FINE-TUNING AND PROMPT ENGINEERING2026-01-09T04:19:27+00:00Ahmad Fajrifajrijrifa@gmail.comRila Mandalarilamandala1@gmail.com<p><strong>Abstract:</strong> This study discusses the optimization of RAG for a FAQ system in the field of information technology product security certification at BSSN. Although LLM generate reliable responses, they often lack up-to-date and domain-specific knowledge, which can be addressed through the RAG approach. This research aims to optimize a domain-specific RAG system by improving embedding performance, enhancing prompt robustness, and increasing retrieval accuracy. The research methods consist of three stages. The first stage involves fine-tuning the bge-m3 embedding model and evaluating its performance using MRR, Recall, and AUC. The second stage applies prompt engineering techniques, namely the SRSM and Autodefense, to mitigate direct-injection and escape-character prompt injection attacks. The third stage evaluates the proposed RAG system using Precision, Recall, and F1-Score metrics against four baseline models. The results of research show that the fine-tuned embedding model achieves higher performance than the original model, with MRR@1 and Recall@1 values of 0.80 and an AUC@100 of 0.7023. In addition, the proposed prompt engineering techniques demonstrate robustness against prompt injection attacks, while the overall RAG system attains a perfect Precision, Recall, and F1-Score of 1.00. <strong>In conclusion</strong><strong>,</strong> the proposed approach effectively enhances retrieval accuracy, embedding quality, and system security, resulting in a more reliable RAG-based FAQ system for information technology product security certification.</p> <p><strong>Keyword</strong><strong>s:</strong> embedding fine-tuning; large language model; prompt engineering; prompt injection mitigation; retrieval-augmented generation</p> <p> </p> <p><strong>Abstrak: </strong>Studi ini membahas optimasi RAG untuk sistem FAQ di bidang sertifikasi keamanan produk teknologi informasi di BSSN. Meskipun LLM menghasilkan respons yang andal, mereka seringkali kurang memiliki pengetahuan terkini dan spesifik domain, yang dapat diatasi melalui pendekatan RAG. Penelitian ini bertujuan untuk mengoptimalkan sistem RAG spesifik domain dengan meningkatkan kinerja embedding, meningkatkan ketahanan prompt dan meningkatkan akurasi pengambilan. Metode penelitian terdiri dari tiga tahap. Tahap pertama melibatkan fine-tuning model embedding bge-m3 dan mengevaluasi kinerjanya menggunakan Mean Reciprocal Rank (MRR), Recall, dan AUC. Tahap kedua menerapkan teknik rekayasa prompt, yaitu Self- SRSM dan Autodefense, untuk mengurangi serangan direct-injection dan escape-character prompt injection. Tahap ketiga mengevaluasi sistem RAG yang diusulkan menggunakan metrik Presisi, Recall, dan F1-Score terhadap empat model dasar. Hasil penelitian menunjukkan bahwa model embedding yang disempurnakan mencapai kinerja yang lebih tinggi daripada model asli, dengan nilai MRR@1 dan Recall@1 sebesar 0,80 dan AUC@100 sebesar 0,7023. Selain itu, teknik rekayasa prompt yang diusulkan menunjukkan ketahanan terhadap serangan injeksi prompt, sementara sistem RAG secara keseluruhan mencapai Presisi, Recall, dan F1-Score sempurna sebesar 1,00. Kesimpulannya, pendekatan yang diusulkan secara efektif meningkatkan akurasi pengambilan, kualitas embedding dan keamanan sistem, menghasilkan sistem FAQ berbasis RAG yang lebih andal untuk sertifikasi keamanan produk teknologi informasi.</p> <p><strong>Kata kunci: </strong>penyempurnaan embedding; model bahasa besar; rekayasa prompt; mitigasi injeksi prompt; retrieval-augmented generation</p>2025-12-31T00:00:00+00:00Copyright (c) 2026 JURTEKSI (jurnal Teknologi dan Sistem Informasi)https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4359ANALYSING STUDENT MENTAL HEALTH THROUGH K-MEANS CLUSTERING AND MULTI-STAGE SAMPLING METHODS2026-01-10T15:30:38+00:00Rahmat Hidayatimjustrahmat2722@gmail.comDede Pratama7pratamadede@gmail.com<p><strong>Abstract:</strong> Mental health is an essential aspect of overall well-being, particularly for university students vulnerable to emotional strain. This study aims to identify clusters of student mental health trends using the K-Means clustering technique. The research involved 60 students from four academic programs at the Faculty of Science and Technology, selected using stratified and cluster sampling techniques. Data were collected using a modified Mental Health Inventory (MHI). The results revealed distinct commonalities among majors: the Statistics program was predominantly defined by the depressed cluster at 53.3%, while Mathematics followed at 40% within the same cluster. In contrast, Biology students predominantly fell under the neu-tral/stable cluster (66.7%), whilst Information Systems students exhibited an even distribution (33.3% per cluster) without a dominant trend. The clustering quality was evaluated using the Silhouette Coefficient, yielding a range of 0.39 to 0.60. Biology (0.60) and Statistics (0.54) exhibited a reasonable structure, but Information Systems (0.39) and Mathematics (0.34) demonstrated a deficient structure. In conclusion, K-Means effectively discerns mental health patterns, providing a data-driven basis for targeted psychological interventions in educational settings.</p> <p><strong>Keyword</strong><strong>s:</strong> biology; information systems; k-means; mathematics; mental health; silhouette coefficient; statistics</p> <p> </p> <p><strong>Abstrak:</strong> Kesehatan mental merupakan komponen vital dari kesejahteraan total, terutama bagi maha-siswa yang rentan terhadap stres emosional. Penelitian ini bertujuan untuk mengidentifikasi kelompok tren kesehatan mental mahasiswa melalui penerapan metode pengelompokan K-Means. Studi ini mencakup 60 mahasiswa dari empat program studi di Fakultas Sains dan Teknologi, yang dipilih melalui metode pengambilan sampel bertingkat dan kelompok. Data dikumpulkan dengan menggunakan Inventaris Kesehatan Mental (MHI) yang dimodifikasi. Temuan menunjukkan kesamaan yang jelas di antara jurusan: program studi Statistika terutama ditandai oleh kelompok depresi (53,3%), diikuti oleh Matematika dengan 40% dalam kelompok depresi. Sebaliknya, mahasiswa Biologi terutama termasuk dalam kelompok netral/stabil (66,7%), sedangkan mahasiswa Sistem Informasi memiliki distribusi yang merata (33,3% per kelompok) tanpa pola yang dominan. Kualitas pengelompokan dinilai dengan Koefisien Sil-houette, menghasilkan rentang 0,39 hingga 0,60. Biologi (0,60) dan Statistika (0,54) memiliki struktur sedang, sedangkan Sistem Informasi (0,39) dan Matematika (0,34) menunjukkan struktur yang buruk. Kesimpulannya, K-Means secara akurat mengidentifikasi tren kesehatan mental, menawarkan landasan berbasis data untuk terapi psikologis yang ditargetkan di ling-kungan pendidikan.</p> <p><strong>Kata kunci:</strong> biologi; kesehatan mental; K-Means; matematika; silhouette coefficient; sistem in-formasi; statistika</p>2026-01-10T15:24:06+00:00Copyright (c) 2026 JURTEKSI (jurnal Teknologi dan Sistem Informasi)https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/4336HEURISTIC GREEDY ALGORITHM FOR OPTIMAL TOURIST ROUTE RECOMMENDATION IN PATI REGENCY2026-01-13T08:50:06+00:00Mohammad Ilham Kurniamohammadilhamkurnia25@gmail.com Alif Catur Murtialif.catur@umk.ac.idRizkysari Mei Maharanirizky.sari@umk.ac.id<p><strong>Abstract:</strong> Tourism in Pati Regency currently lacks an integrated digital information system, resulting in suboptimal dissemination of information and trip planning. To address this issue, a tourism website for Pati Regency was developed, equipped with a recommended tourist route feature. This study aims to design and develop a web-based tourism information system that provides destination information based on categories, media galleries, and promotional YouTube videos, as well as a Patiways feature that allows users to select multiple tourist destinations. The system then calculates the most efficient visiting order using a greedy heuristic algorithm, based on the selected starting point. The system was developed using the Waterfall method, consisting of analysis, design, implementation, and testing phases. The system design is illustrated through UML diagrams such as Use Case, Activity, and Class Diagrams. With this system, the distribution of tourism information becomes more effective, and tourists can plan trips with optimized routes. Additionally, the website is expected to serve as a digital promotion medium that contributes to increasing tourist visits to Pati Regency.</p> <p><strong>Keyword</strong><strong>s:</strong> heuristic greedy; recommendation route; tourism; waterfall</p> <p> </p> <p><strong>Abstrak:</strong> Pariwisata di Kabupaten Pati saat ini belum memiliki sistem informasi digital yang terintegrasi, sehingga penyebaran informasi dan perencanaan perjalanan wisata masih belum optimal. Untuk mengatasi permasalahan tersebut, penelitian ini mengembangkan sebuah website pariwisata Kabupaten Pati yang dilengkapi dengan fitur rekomendasi rute wisata terbaik. Penelitian ini bertujuan untuk merancang dan membangun sistem informasi pariwisata berbasis web yang mampu menyajikan informasi destinasi wisata berdasarkan kategori, galeri media, serta video promosi YouTube. Selain itu, sistem ini dilengkapi dengan fitur unggulan bernama Patiways yang memungkinkan pengguna memilih beberapa destinasi wisata dan secara otomatis memperoleh urutan kunjungan paling efisien menggunakan algoritma heuristik greedy berdasarkan titik awal perjalanan. Pengembangan sistem dilakukan menggunakan metode Waterfall yang meliputi tahapan analisis kebutuhan, perancangan sistem, implementasi, dan pengujian. Perancangan sistem direpresentasikan menggunakan diagram UML, meliputi Use Case Diagram, Activity Diagram, dan Class Diagram. Dengan adanya sistem ini, diharapkan penyebaran informasi pariwisata menjadi lebih efektif, wisatawan dapat merencanakan perjalanan dengan rute yang optimal, serta website dapat berfungsi sebagai media promosi digital yang berkontribusi terhadap peningkatan kunjungan wisatawan ke Kabupaten Pati.</p> <p><strong>Kata kunci:</strong> heuristik greedy; pariwisata; rekomendasi rute; waterfall</p>2025-12-31T00:00:00+00:00Copyright (c) 2026 JURTEKSI (jurnal Teknologi dan Sistem Informasi)