APPLICATION OF FAST FRAMEWORK IN THE DEVELOPMENT OF UNTAN FMIPA LABORATORY INFORMATION SYSTEM

Yudha Arman¹, Renny Puspita Sari², Nurul Mutiah²*, Dian Prawira²
¹Physics, Universitas Tanjungpura
²Information Systems, Universitas Tanjungpura
email: *yudha_arman@physics.untan.ac.id

Abstract: The laboratory is one of the facilities owned by the FMIPA Laboratory, which is one of the facilities owned by Tanjungpura University to support tridharma activities. There are several problems in laboratory management, namely that management is carried out manually, so it takes a long time to apply for the loan of laboratory equipment and to prepare a free laboratory loan letter. In order to improve services, ensure data security, and accommodate all laboratory data, it is necessary to develop an FMIPA laboratory information system (SILABMIPA). The FAST framework is used in developing SILABMIPA to suit user needs. The analysis and development of SILABMIPA follows the FAST method with the stages Scope Definition, Problem Analysis, Requirements Analysis, Logical Design, Decision Analysis, Physical Design and Integration, Construction and Testing. With the construction of SILABMIPA, it can make it easier for managers to manage laboratories, assist students in applying for and borrowing equipment, as well as making laboratory loan-free certificates. Based on the results of system functional testing against SILABMIPA, it was found that the system operates well in accordance with the user's functional needs. Meanwhile, the system interface test results including software aspects, functionality aspect, and visual communication aspects obtained a percentage score of 82.60% in the very good category.

Keywords: information systems; fast framework; laboratory service

Kata kunci: sistem Informasi; kerangka kerja fast; layanan laboratorium
INTRODUCTION

The rapid development of technology has triggered various organizations, especially higher education organizations, to find various problem solving solutions in supporting the tri dharma process and can make it easier for system managers to organize information and optimize organizational work processes [1]. The laboratory is one of the facilities that supports the three principles of higher education. The laboratory is a space designed to carry out the needs of the tri dharma process of higher education including education, research and community service in which there is infrastructure and supporting facilities tailored to needs [2]. In order to implement a good laboratory use process, an effective and efficient inventory and management process is needed. Laboratory management is a process of planning, managing, directing, monitoring and controlling laboratory equipment and supplies used to achieve certain goals, in this case the implementation of the tri dharma process of higher education [3]. Inventory in the laboratory management process is documentation of facilities and infrastructure for laboratory equipment and laboratory activities to prevent misuse, facilitate laboratory operations and inspections [4].

Based on the 2019-2024 Strategic Plan of the Faculty of Mathematics and Natural Sciences (FMIPA), the Laboratory is one of the facilities owned by Tanjungpura University to support various academic activities. Currently FMIPA has 13 laboratories. The capacity and time allocation for use of the FMIPA laboratory is very limited to meet the needs of the entire FMIPA academic community. Practical activities organized by various laboratories under the auspices are handed over to departments or study programs whose fields of study are very intersecting. Various processes that take place at the FMIPA UNTAN Laboratory still use conventional media so that searching and processing data takes a relatively long time and existing data is vulnerable to damage or loss. One effective effort to increase the efficiency of data search and processing time, improve services, ensure data security, and accommodate all laboratory data, requires a technology-based system that is able to accommodate the various needs of all processes that take place in the laboratory. A laboratory information system is a system that manages and stores data on all laboratory activities, starting from equipment inventory, borrowing equipment, using equipment, lab usage, correspondence and other laboratory needs [5]. Laboratory information system development is a facility that has now become the main equipment in the laboratory governance system [6].

To implement the FMIPA laboratory information system in this research, a software development method was used. Software development methods are frameworks used so that software is built according to user needs and follows standards [7]. This research uses Framework for the Application of Sistem Thinking (FAST) as a software development method. FAST is a software development method that aims to make the management of data and information needed in development effective and accurate [8]. Several previous studies have implemented FAST as a software development method [9], [10]. Based on this research, it was found that implementing FAST as a method in developing information systems can create a system that is built according to user needs and is built by applying the principles of systems thinking so that it can view problems and solu-
tions in an information system and in a comprehensive way. Based on this, this research carried out a design for a Laboratory Information System FMIPA UNTAN by applying the FAST method.

METHOD

The FAST method is a software development method that can capture user needs precisely. The FAST stages consist of Scope Definition, Problem Analysis, Needs Analysis, Decision Analysis, Logical Design, Physical Design, Construction and Testing, and Installation and Delivery. This research method adopts the stages of the FAST method. The research stages can be seen in Figure 1.

![Figure 1. Research Methodology](image)

The research stages carried out consist of:
1. Defining the scope to be completed and collecting information using the SMART method.
2. Problem analysis containing the main problems of the current system carried out using the PIECES method.
3. System requirements analysis which includes the results of the functional and non-functional requirements analysis of the system being built.
4. Logical design which contains system design both in the form of UML diagrams and data modeling.
5. Physical design which changes the logical design into a physical design in the form of a relational database design and interface design that is ready to be implemented.
6. Decision Analysis in the form of selecting the software and hardware used to build the system.
7. Construction and testing is carried out by implementing logical and physical designs into coding form and testing is carried out on the system that has been built. Testing was carried out using the black box method. The test questionnaire is calculated using a Likert scale calculation with formula (1).

\[
\% \text{Index} = \frac{\text{total score}}{y} \times 100 \quad (1)
\]

RESULTS AND DISCUSSION

Analysis and design in this Laboratory Information System uses a system development method, namely the Framework for the Application of System Thinking (FAST), which is carried out sequentially based on stages, namely, Scope Definition, Problem Analysis, Requirements Analysis, Logical Design, Decision Analysis, Physical stages. Design and Integration, Construction and Testing, and Installation and Delivery.

In the scope definition, the activity carried out is defining the boundaries of the information system project contained in the Project Charter. In this discussion, there are project limitations,
namely a website-based system for FMIPA Tanjungpura University, whose users consist of academic admins, deans, lecturers and students. The types of services in the system will be based on user needs. To determine the feasibility of the project, it can be found in the Project Charter using the SMART Method. SMART is an abbreviation for Specific, Measurable, Achievable, Relevant, and Timebound. The SMART method is an approach to planning and setting targets that are precise and measurable [11]. Table 1 below is the result of SMART method analysis from the FMIPA laboratory information system.

Table 1. Results of SMART method analysis

<table>
<thead>
<tr>
<th>SMART Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific</td>
<td>The aim of this project is to build a laboratory information system for FMIPA Untan which provides laboratory management services for all study programs at FMIPA Untan, which makes it easier for lecturers and students to carry out activities in the field of tri dharma of higher education which creates -use the laboratory as a support.</td>
</tr>
<tr>
<td>Measureable</td>
<td>Satisfaction and usefulness of the laboratory information system services that were built were measured using a survey intended for academic admins, lecturers and students.</td>
</tr>
<tr>
<td>Achievable</td>
<td>In achieving its goals, FMIPA Untan prepares</td>
</tr>
</tbody>
</table>

Problem analysis is carried out using the PIECES method which identifies problems in the system through the Performance, Information, Economic, Control, Efficiency and Service components. At this stage, what is done is to understand in detail the problem scope of the system using PIECES analysis to identify problems with the old system and create an information vision and functional vision of the system. Table 2 describes the PIECES analysis of the system.
Table 2. System PIECES Analysis

<table>
<thead>
<tr>
<th>Type Analysis</th>
<th>Old System</th>
<th>New System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>The process of checking laboratory data is limited by space, so it can only be seen or checked in one place. This makes the performance of laboratory management stiff and static.</td>
<td>The system built is a web-based application system so that laboratory data can be accessed anytime and anywhere. This makes laboratory performance more flexible and dynamic.</td>
</tr>
<tr>
<td>Information</td>
<td>The resulting laboratory data and information are not timely because the resulting data is still managed manually.</td>
<td>The information produced is timely and can be accessed directly by parties who need the information.</td>
</tr>
<tr>
<td>Economy</td>
<td>In the old system, various processes that took place such as managing schedules, borrowing laboratories, inventorying tools and materials, and so on required a lot of paper, thereby increasing the costs that had to be incurred.</td>
<td>Schedule management, laboratory borrowing, inventory of tools and materials, and so on do not require paper and can be done directly via computer so that costs can be reduced.</td>
</tr>
</tbody>
</table>

Control

- **Old System**: Laboratory data can be manipulated because all processes such as laboratory loans, inventory of tools and materials, and so on are carried out manually.
- **New System**: Laboratory data is very unlikely to be manipulated because it is online and utilizes technology in every management process.

Efficiency

- **Old System**: It takes a very long time because all laboratory management processes must be carried out one by one.
- **New System**: Laboratory management such as laboratory lending, inventory of tools and materials, and so on can be faster because various processes can be carried out at once.

Service

- **Old System**: Human error is very prone to occur because it is still manual, thereby reducing the quality of laboratory services provided.
- **New System**: Minimizing the occurrence of human error thereby improving the quality of laboratory services provided.

At the requirements analysis stage, what is done is to identify the functional and non-functional requirements of the system being built. At the Decision analysis stage, the activity carried out is determining the application architecture as shown in Figure 2. This Laboratory
Information System software can be accessed using the web, with a server using Apache and PHP language. Meanwhile, programming uses Sublime Text 3. Users can access the system via a PC or mobile device that has a Web browser application such as Mozilla Firefox, Google Chrome, Opera. As well as mobile web browsers such as Safari, UC Browser and Opera Mini. In this system, all data is stored on the server. Users can access data on the server by calling web pages on the web server. All incoming input will be stored in the database and can be accessed again if the user requests it via the web server.

Figure 2. Application Architecture

Figure 3. Implementation of Laboratory Equipment Information Dashboard

Figure 4. Implementation of the Report on Borrowing Laboratory Equipment

Figure 5. Implementation of the Laboratory Loan Free Letter

Figure 5 is an implementation of the interface used by users who successfully submit a laboratory loan-free letter.

Testing from the system interface side is assessed in three categories, namely software aspects, functionality aspects and visual communication aspects. Table 3 describes the test items for the software aspect category along with the questionnaire results from 27 respondents. Answer item 1 means very good, 2 means good, 3 means fair, 4 means poor, and 5 means very poor.
Table 3. Software Aspect Test Items And Results

<table>
<thead>
<tr>
<th>Test Items</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of running the SI-LABMIPA application</td>
<td>17</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ease of accessing the features of the SI-LABMIPA application</td>
<td>11</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Smooth page movements in the SI-LABMIPA application</td>
<td>4</td>
<td>20</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ease of moving pages using navigation buttons</td>
<td>8</td>
<td>17</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Overall convenience of using the SI-LABMIPA application</td>
<td>15</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Based on the results of testing three aspects of the interface to the FMIPA UNTAN Laboratory Information System using a questionnaire to 27 respondents, and calculations carried out using a Likert scale, a percentage score of 82.60% was obtained in the very good category.

CONCLUSION

The Laboratory Information System which was developed using the Framework for the Application of System Thinking (FAST) method, has succeeded in meeting user needs regarding laboratory services. Based on the results of system interface testing on 27 respondents, the feasibility results were 82.60%, which is included in the very good category, so it can be concluded that the Framework for the Application of System Thinking (FAST) method is a method that can support the development of information systems appropriately, effective and can cover the needs of system users.

The next suggestion for the development of the FMIPA UNTAN Laboratory Information System is to add a feature for ordering queues for borrowing laboratory equipment so that users know information about the queue for borrowing laboratory equipment along with the time period for which the equipment is available. In terms of using methods for further research, problem definition can be done by adding the SWOT method so that the state of the organizational environment and information system needs and opportunities can be known with certainty.

BIBLIOGRAPHY

