SENTIMENT ANALYSIS OF PUBLIC OPINIONS TOWARDS TELKOM UNIVERSITY POST PANDEMIC

Anindya Prameswari Putri Djakaria, Oktariani Nurul Pratiwi, Hanif Fakhrurroja

Abstract


Abstract: Twitter, as a social media platform, has rapidly grown as a means for people to express their opinions and thoughts on various topics, including education. The number of Twitter users surged to 10.645.000 in 2020, with a significant increase during the pandemic. Telkom University, as a private institution of higher education in Indonesia, has become one of the topics of discussion on Twitter. Users’ opinions about Telkom University vary, ranging from positive to negative. To gain deeper insights into public view, sentiment analysis is essential. The analysis follows the Knowledge Discovery in Databases (KDD) process, utilizing the Naive Bayes classification algorithm. The evaluation results indicate the best accuracy achieved with an 80:20 data split, resulting in an accuracy rate of 82.05%, precision of 82.3%, recall of 82.05%, and F1-Score of 82.08%. The Naïve Bayes model demonstrates good performance for sentiment analysis of public views regarding Telkom University on Twitter.

           
Keywords: naïve bayes; sentiment analysis; twitter; telkom university.

 

 

Abstrak: Media sosial Twitter berkembang pesat sebagai sarana masyarakat berekspresi untuk menuangkan opini dan pikiran mereka mengenai topik apapun, termasuk pendidikan. Pengguna Twitter meningkat tajam hingga 10.645.00 pengguna pada tahun 2020 dan terus meningkat selama pandemi. Telkom University sebagai perguruan tinggi menjadi salah satu topik yang dibicarakan yang berkaitan dengan pendidikan. Pendapat mengenai Telkom University yang diungkapkan oleh pengguna Twitter beragam, baik positif maupun negatif. Analisis sentimen diperlukan untuk memahami pandangan publik lebih mendalam. Digunakan tahapan Knowledge Discovery in Databases dan algoritma klasifikasi Naïve Bayes dalam analisis ini. Hasil evaluasi menunjukkan akurasi paling baik dicapai dengan rasio data 80:20, dengan nilai akurasi sebesar 82.05%, nilai presisi sebesar 82.3%, nilai recall sebesar 82.05%, dan nilai F1-Score sebesar 82.08%. Model klasifikasi Naïve Bayes memiliki performa baik untuk analisis sentimen pandangan publik di Twitter mengenai Telkom University.

 

Kata kunci: analisis sentimen; naïve bayes; twitter; telkom university.


Full Text:

PDF

References


A. Karami, M. Lundy, F. Webb and Y. K. Dwivedi, "Twitter and Research: A Systematic Literature Review Through Text Mining," Social Science Research Grant Program, vol. 8, pp. 67698-67717, 2020.

S. Saha, J. Yadav and P. Ranjan, "Proposed Approach for Sarcasm Detection in Twitter," Indian Journal of Science and Technology, vol. 10, no. 25, 2017.

D. Berniawan, Amri and Tinaliah, "Implementasi Algoritma Naïve Bayes Untuk Klasifikasi Sentimen Pengguna Twitter Terhadap KEMKOMINFO Di Indonesia," in 2nd MDP Student Conference (MSC) 2023, 2023.

N. Permatasari, R. Yosral and C. F. Annisa, "Twitter Analysis About Online Education During COVID-19 Pandemic In Indonesia," in Seminar Nasional Official Statistics, 2020.

W. Sihaloho, R. U. Pratiwi, I. P. Sari, I. Q. Aini, Z. Yunita and T. Winanda , "Perkembangan Konsep Pendidikan dan Klasifikasi Pendidikan," Jurnal Dirosah Islamiyah, vol. 5, no. 3, pp. 754-762, 2023.

R. Ambarwati and D. C. U. Lieharyani, "Visualisasi Data Tweet di Sektor Pendidikan Tinggi Pada Saat Masa Pandemi," Building of Informatics, Technology and Science (BITS), vol. 4, no. 1, pp. 116-123, 2022.

M. Cindo, D. P. Rini and Ermatita, "Literatur Review: Metode Klasifikasi pada Sentimen Analisis," Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), pp. 66-70, 2019.

J. Singh, G. Singh and R. Singh, "Optimization of sentiment analysis using machine learning classifiers," Human-centric Computing and Information Sciences, 2017.

S. Z. Harahap and A. Nastuti, "Teknik Data Mining untuk Penentuan Paket Hemat Sembako dan Kebutuhan Harian dengan Menggunakan Algoritma FP-Growth (Studi Kasus di Ulfamart Lubuk Alung)," Informatika: Jurnal Ilmiah Fakultas Sains dan Teknologi, Universitas Labuhanbatu, vol. 7, no. 3, pp. 111-119, 2019.

A. V. Sudiantoro and E. Zuliarso, "Analisis Sentimen Twitter Menggunakan Text Mining dengan Algoritma Naive Bayes Classifier," Dinamika Informatika, vol. 10, no. 2, pp. 69-73, 2018.

A. Saleh, "Implementasi Metode Klasifikasi Naive Bayes dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga," Citec Journal, vol. 2, no. 3, pp. 207-217, 2015.

L. A. Muhaimin, O. N. Pratiwi and R. Y. Fa'rifah, "Klasifikasi Soal Berdasarkan Kategori Topik Menggunakan Metode Algoritma Naive Bayes dan Algoritm C4.5," in eProceedings of Engineering, 2023.




DOI: https://doi.org/10.33330/jurteksi.v10i1.2645

Article Metrics

Abstract view : 50 times
PDF - 36 times

Refbacks

  • There are currently no refbacks.


Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK ROYAL 

Copyright © LPPM STMIK ROYAL

 

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.