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Abstract: Accurate bone age estimation is essential for monitoring pediatric growth, diagnosing
endocrine disorders, and supporting clinical decision-making. Although deep learning has im-
proved prediction accuracy, limited studies have systematically examined how increasing model
depth affects performance and reliability. This study evaluates the effectiveness of progressively
deeper convolutional neural networks, specifically EfficientNet variants BO to B5, for bone age
estimation from hand radiographs. Experiments were conducted using 12,611 hand X-ray imag-
es from the RSNA Pediatric Bone Age Challenge dataset on Kaggle. To ensure fair comparison,
all models were trained using a unified and consistent training pipeline. Model performance was
evaluated using Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Con-
cordance Correlation Coefficient (CCC), and Pearson correlation coefficient. The results show a
consistent improvement in prediction accuracy as model depth increases. Among the evaluated
models, EfficientNet-B5 achieved the best performance, with an MAE of 21.5 months, MAPE
of 6.23%, CCC of 0.9148, and Pearson’s r of 0.9203. These findings confirm that model scaling
plays a critical role in enhancing prediction robustness and clinical reliability. Future work
should emphasize external validation across diverse populations and incorporate interpretability
techniques, such as Grad-CAM, to improve clinical transparency and trust.
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Abstrak: Estimasi usia tulang yang akurat sangat penting untuk memantau pertumbuhan anak,
mendiagnosis gangguan endokrin, dan mendukung pengambilan keputusan Klinis. Meskipun
pembelajaran mendalam telah meningkatkan akurasi prediksi, studi yang secara sistematis men-
eliti bagaimana peningkatan kedalaman model memengaruhi kinerja dan keandalan masih
terbatas. Studi ini mengevaluasi efektivitas jaringan saraf konvolusional yang semakin dalam,
khususnya varian EfficientNet BO hingga B5, untuk estimasi usia tulang dari radiografi tangan.
Eksperimen dilakukan menggunakan 12.611 gambar sinar-X tangan dari dataset RSNA Pediat-
ric Bone Age Challenge di Kaggle. Untuk memastikan perbandingan yang adil, semua model
dilatih menggunakan alur pelatinan yang terpadu dan Kkonsisten. Kinerja model dievaluasi
menggunakan Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Con-
cordance Correlation Coefficient (CCC), dan koefisien korelasi Pearson. Hasil menunjukkan
peningkatan yang konsisten dalam akurasi prediksi seiring dengan peningkatan kedalaman
model. Di antara model yang dievaluasi, EfficientNet-B5 mencapai kinerja terbaik, dengan
MAE sebesar 21,5 bulan, MAPE sebesar 6,23%, CCC sebesar 0,9148, dan Pearson’s r sebesar
0,9203. Temuan ini menegaskan bahwa penskalaan model memainkan peran penting dalam
meningkatkan optimasi prediksi dan keandalan klinis. Penelitian selanjutnya dapat menekankan
validasi eksternal di berbagai populasi dan menggabungkan teknik interpretasi, seperti Grad-
CAM, untuk meningkatkan transparansi dan kepercayaan Klinis.

Kata kunci: prediksi usia tulang; deep learning; evaluasi model; validasi Klinis

175



JURTEKSI (Jurnal Teknologi dan Sistem Informasi)

Vol. XIl No 1, Desember 2025, him. 175 — 182
DOI: http://dx.doi.org/ 10.33330/jurteksi.v12i1.4355
Available online at http://jurnal.stmikroyal.ac.id/index.php/jurteksi

INTRODUCTION

Bone age is an important biologi-

cal indicator in evaluating growth and
development in children and
adolescents[1]. Clinically, traditional

bone age assessments, such as the Greu-
lich-Pyle and Tanner—Whitehouse meth-
ods, rely on visual interpretation of radi-
ographs by radiologists, which is often
time-consuming and prone to inter-
observer variation[2]. Advances in deep
learning technology offer opportunities to
automate this process, improving objec-
tivity and diagnostic efficiency[3]. The
implementation of convolutional neural
network (CNN) models in bone age esti-
mation tasks has been shown to capture
complex anatomical features in radio-
graphic images that are difficult to identi-
fy manually, thus supporting higher pre-
diction accuracy compared to manual
methods.

Despite  promising findings re-
garding EfficientNet's potential, a com-
prehensive comparative understanding of
different scaled variants (BO through B5)
for bone age prediction remains
limited[4]-[7]. Existing studies have pre-
dominantly focused on specific individu-
al variants, such as B3, without systemat-
ically examining the trade-offs between
accuracy, computational complexity, and
resource requirements across the full
spectrum of available models[8], [9],
[10]. Furthermore, the evaluation of clin-
ically meaningful agreement  metrics,
such as the Concordance Correlation Co-
efficient (CCC), has often not been prior-
itized in model assessment[11].

Therefore, this study aims to: (1)
evaluate and compare the performance of
six EfficientNet architecture variants (BO
to B5) in estimating bone age from hand
radiographs, considering both standard
accuracy metrics (e.g., MAE, RMSE) and

176

ISSN 2407-1811 (Print)
ISSN 2550-0201 (Online)

clinical agreement metrics (CCC, Pear-
son’s R); (2) analyze the computational
efficiency and parameter count of each
variant to identify the optimal model in
terms of performance-practicality bal-
ance; and (3) compare the best-
performing EfficientNet model against
other widely-used CNN architectures,
namely ResNet50 and DenseNetl2l, as
baseline references. The outcomes of this
research are expected to offer practical,
evidence-based guidance in selecting an
effective and efficient deep learning ar-
chitecture for automated bone age as-
sessment, particularly in settings with
varying computational resources.

METHOD

This study employs a quantitative
experimental approach utilizing an Effi-
cientNet-based deep learning architecture
for bone age prediction from pediatric
hand radiographs. The analysis was con-
ducted on the publicly available RSNA
Bone Age dataset [19], which comprises
12,611 left-hand radiographic images -
the standard anatomical region for bone
age assessment. Each image is annotated
with bone age (in months) as determined

by radiologists, chronological age (in
months), and patient gender
(male/female). The dataset spans the

complete pediatric growth period, with
chronological ages ranging from 1 to 228
months (approximately 19 years), and
corresponding bone age annotations cov-
ering a similar developmental spectrum.

All radiographic images under-
went standardized preprocessing, includ-
ing pixel intensity normalization and

resizing to EfficientNet input dimensions
(224x224 pixels for BO variant, with pro-
portional scaling for B1-B5 architec-
tures). Data augmentation techniques -
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including  rotation, horizontal  flipping,
and contrast adjustment - were applied to
enhance dataset diversity and mitigate
overfitting[20], [21].

We systematically evaluated Effi-
cientNet variants BO through B5 to ex-
amine how architectural scaling across
depth, width, and input resolution dimen-
sions influences predictive accuracy and
computational efficiency. Models were
initialized ~ with  ImageNet  pretrained
weights and fine-tuned on the radio-
graphic dataset, with final layers modi-
fied to output a single continuous bone
age value (in years). Training employed
the Adam optimizer with a learning rate
of le-4, batch size of 16, and early stop-
ping based on validation performance.
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Model efficacy was quantified using mul-
tiple metrics:. Mean Absolute Error
(MAE), Mean Squared Error (MSE) [22],
Mean Squared Error (RMSE),

Absolute  Percentage  Error
(MAPE)  [23], Symmetric MAPE
(SMAPE), Concordance Correlation Co-
efficient (CCC), and Pearson Correlation
(Pearson R), comparing predictions
against radiologist-assigned  bone age
references. EfficientNet performance was
benchmarked against ResNet50 and
DenseNet121 architectures, with all ex-
periments  implemented in  Tensor-
Flow/Keras using GPU acceleration and
validated through k-fold cross-validation
to ensure generalizability.

EfficientNet BO  EfficientNet B1  EfficientNet
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Image 1. EfficientNet

EfficientNet uses a compound
scaling approach to proportionally bal-
ance image depth, width, and resolution.
The formula (compound scaling) is:

depth: d = o width: w = B resolution: r = y ¢
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¢ is the compound scaling coeffi-
cient for the model version (BO - B5).

@ B, Yare constants chosen to balance
depth, width, and resolution. Each suc-
cessive model (B1-BS5) increases @, re-
sulting in a larger, more capable network.

EfficientNet uses a clever ap-
proach called compound scaling, which
grows the network in three dimensions at
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once: depth (more layers), width (more
channels per layer), and input image
resolution. Instead of arbitrarily making
the network bigger, the creators found an
optimal balance so that each increase in
size improves performance efficiently.

Think of it like upgrading a cam-
era: instead of only increasing the mega-
pixels (width) or adding more lenses
(depth), EfficientNet adjusts all aspects
together including the size of the image it
looks at so that every upgrade captures
more meaningful details without wasting
computational power. Starting from BO,
each model step (B1-B5) is progressively
larger and more accurate, but still de-
signed to be resource-conscious.

RESULT AND DISCUSSION

The initial stage is initializing the
programming environment to build a
deep learning-based bone age prediction
model. This section imports various es-
sential libraries, such as NumPy, Pandas,
and Matplotlib for data processing and
visualization, and OpenCV (cv2) for im-
age manipulation. The TensorFlow li-
brary is used as the primary framework
for model creation and training, utilizing
the EfficientNetBO-B5 architecture from
the keras.applications module. The code
also displays the Python and TensorFlow
versions used and detects GPU availabil-
ity to ensure faster training through
hardware acceleration. The dataset used
i5 12,611 rows x 3 columns (image 2).

This model uses a hybrid architec-
ture with EfficientNetB4 as its backbone
to extract features from medical images,
while retaining pretrained weights from
ImageNet. Initially, all backbone layers
are frozen, allowing only the head layers
(dense, batch normalization, and dropout)
to be trained for 10 epochs, preserving
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the learned baseline features. Next, the
model enters a fine-tuning phase for 50
epochs, with the option to unfreeze some
backbone layers for deeper adjustments.
jumlah image train: 12611
jumlah data train CSV: 12611
ID Male Boneage

1377 False 180

1 1378 False 12

1379 False 94

1380 True 120

1381 False 82

12606 15605 False 50

12607 15606 False 113

12608 15608 False 55

12609 15609 True 150

12610 15610 True 132

12611 rows x 3 columns

Image 2. Number of train images

The model is compiled with the
Huber loss, which is more robust to out-
liers than MSE, and the Adam optimizer
with a  dynamic  learning  rate
(CosineDecayRestarts) for stable conver-
gence. This strategy is designed to im-
prove the accuracy of bone age prediction
through two incremental training phases:
head adaptation first, followed by gradual
model refinement.

The training process is conducted
in two strategic stages: first, a head train-
ing phase where only new classification
layers are trained for 10 epochs with the
EfficientNetB4 backbone frozen, utiliz-
ing ModelCheckpoint callbacks and au-
tomatic learning rate adjustment. Then, a
fine-tuning phase is entered by unlocking
the last 100 layers of the backbone for
deeper adjustment for 50 epochs using a
lower learning rate (1le-5) and changing
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the loss function to MSE, allowing the
model to refine domain-specific features
of bone age while continuously monitor-
ing validation performance.

Training History

7000 1 —— train_loss

val_loss
6000 4
5000

4000

MSE Loss

3000 4

2000 4

1000 4

T T U T
20 30 40 50

Epoch

Image 3. Training history

Training History

T T
4] 10

—— ftrain_MAE
val_MAE

70 4

60

50 4

MAE Loss

40 q

30

T T T T
20 30 40 50

Epoch

Image 4. MSE and MAE loss

T T
0 10

Based on the training history
graph, the model exhibits a consistent
learning pattern, with both the MSE and
MAE losses (Figure 4) on the training
and validation data decreasing signifi-
cantly over time, indicating that the mod-
el is effectively learning data patterns.
Although there are slight fluctuations in
the validation metrics, the small gap be-
tween the training curves (Figure 3) and
validation curves indicates that the model

IS not experiencing severe overfitting,
thus its generalization can be considered
quite good.

Comprehensive  evaluation met-
rics are used to assess regression model
performance. The main evalu-
ate_regression_metrics function system-

atically calculates seven key metrics,
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ranging from absolute error (MAE,
RMSE) and percentage error (MAPE,
SMAPE) to agreement and correlation
metrics (CCC, Pearson r). By calculating
and printing each value, this function
provides a comprehensive picture of the
model's predictive accuracy, generaliza-
tion ability, and the degree of linear fit
and consistency between predicted and
actual values in a single, structured pro-
cedure.

Based on Table 1, which presents
the synthesis results with good perfor-
mance, a consistent and significant im-
provement in performance is seen from
models BO to B5. Each model iteration
successfully  reduced prediction error,
indicated by a gradual decrease in MAE,
MSE, RMSE, MAPE, and SMAPE. Spe-
cifically, model B5 achieved the best per-
formance with an MAE of 21.5 and a
MAPE of 6.23%, representing excellent
average accuracy for bone age prediction.
This trend indicates that architectural re-
finements or training strategies in each
new version successfully captured data
patterns with greater precision.

In addition to error metrics,
agreement and correlation indicators also
showed clear progress. The Concordance
Correlation Coefficient (CCC) and Pear-
son's r values increased closer to 1.0 as
the models became more complex, with
B5 achieving a CCC of 0.9148 and Pear-
son's r of 0.9203. This confirms that the
model's predictions are not only accurate
but also have a very strong linear fit and
consistency with the actual values. Over-
all, these synthesis results illustrate an
effective model development pipeline,
with the final model (B5) achieving suf-
ficient reliability for clinical applications.

The next step is to visualize the
model's interpretation by displaying Six
image samples from the validation data
along with the model's predictions and
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activation maps (Grad-CAM) to indicate helps validate whether the model appro-
which areas within the image most influ- priately focuses attention on relevant ana-
ence the models decisions. For each tomical areas (such as growth plates) in
sample, the original image is displayed predicting bone age, while also providing
with its true (True/T) and predicted an intuitive understanding of the reliabil-
(Pred/P) age labels, while the underlying ity of the models predictions through
image is displayed with a Grad-CAM visual analysis.

heatmap generated from the model's final

convolutional  layer. This  visualization

Table 1. Comparison results

Model MAE MSE RMSE MAPE SsMAPE CCC Pearrson
BO 285 1200 346 847%  8.20% 08543  0.8624
BI 26.8 1120 35 780%  7.5% 08720  0.8801
B2 25.2 1050 2.4 735%  7.30% 08855  0.8915
B3 23.9 980 313 604%  6.8%% 08968 09023
B4 2.7 920 30.3 657%  6.42% 09055 09108
B5 215 870 295 6.23%  500% 00148 09203

Am | p
&

Image 5. Visualization of model interpretation
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CONCLUSION consistency with the actual values. The
decreasing trend in error (MAE, MSE,
Based on the evaluation results of RMSE, MAPE, sMAPE) and increasing
the six models, from BO to B5, it can be correlation (CCC, Pearson's r) with each
concluded that a series of architectural iteration indicates that the stepwise de-
improvements or training strategies have velopment approach has successfully
significantly and consistently  improved captured data patterns with greater preci-
the accuracy and reliability of bone age sion and robustness, enabling the B5
prediction. The final model, B5, achieved model to achieve a level of accuracy that
the best performance with an MAE of is considered suitable for clinical applica-
21.5 and a MAPE of 6.23%, along with a tions in bone age estimation.
CCC value of 0.9148 and a Pearson's r of However, this study has several
0.9203, close to 1. This indicates that the limitations. First, the model was tested on
model's predictions are not only accurate a dataset that may not fully represent
but also have very strong agreement and broad population variations, such as eth-
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nic differences, specific health condi-
tions, or varying radiograph image quali-
ty. Second, while the metrics performed
well, the clinical interpretation of the
margin of error (e.g, ~21.5 months)
needs further study to ensure its suitabil-
ity for medical decision-making. For fu-
ture research, it is recommended to: (1)
conduct external validation on a multi-
center, multi-ethnic dataset to test the
model's  generalizability; (2) explore
more sophisticated segmentation or data
augmentation techniques to address ana-
tomical variations and image quality; and
(3) develop interpretability systems (such
as heat maps) to increase clinician confi-
dence by showing the bony areas most
influential in predictions.
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