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Abstract: Accurate bone age estimation is essential for monitoring pediatric growth, diagnosing 
endocrine disorders, and supporting clinical decision-making. Although deep learning has im-
proved prediction accuracy, limited studies have systematically examined how increasing model 
depth affects performance and reliability. This study evaluates the effectiveness of progressively 
deeper convolutional neural networks, specifically EfficientNet variants B0 to B5, for bone age 
estimation from hand radiographs. Experiments were conducted using 12,611 hand X-ray imag-
es from the RSNA Pediatric Bone Age Challenge dataset on Kaggle. To ensure fair comparison, 
all models were trained using a unified and consistent training pipeline. Model performance was 
evaluated using Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Con-
cordance Correlation Coefficient (CCC), and Pearson correlation coefficient. The results show a 
consistent improvement in prediction accuracy as model depth increases. Among the evaluated 
models, EfficientNet-B5 achieved the best performance, with an MAE of 21.5 months, MAPE 
of 6.23%, CCC of 0.9148, and Pearson’s r of 0.9203. These findings confirm that model scaling 
plays a critical role in enhancing prediction robustness and clinical reliability. Future work 
should emphasize external validation across diverse populations and incorporate interpretability 
techniques, such as Grad-CAM, to improve clinical transparency and trust. 
  
Keywords: bone age prediction; deep learning; model evaluation; clinical validation 

 
 

Abstrak: Estimasi usia tulang yang akurat sangat penting untuk memantau pertumbuhan anak, 
mendiagnosis gangguan endokrin, dan mendukung pengambilan keputusan klinis. Meskipun 
pembelajaran mendalam telah meningkatkan akurasi prediksi, studi yang secara sistematis men-
eliti bagaimana peningkatan kedalaman model memengaruhi kinerja dan keandalan masih 
terbatas. Studi ini mengevaluasi efektivitas jaringan saraf konvolusional yang semakin dalam, 
khususnya varian EfficientNet B0 hingga B5, untuk estimasi usia tulang dari radiografi tangan. 
Eksperimen dilakukan menggunakan 12.611 gambar sinar-X tangan dari dataset RSNA Pediat-
ric Bone Age Challenge di Kaggle. Untuk memastikan perbandingan yang adil, semua model 
dilatih menggunakan alur pelatihan yang terpadu dan konsisten. Kinerja model dievaluasi 
menggunakan Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Con-
cordance Correlation Coefficient (CCC), dan koefisien korelasi Pearson. Hasil menunjukkan 
peningkatan yang konsisten dalam akurasi prediksi seiring dengan peningkatan kedalaman 
model. Di antara model yang dievaluasi, EfficientNet-B5 mencapai kinerja terbaik, dengan 
MAE sebesar 21,5 bulan, MAPE sebesar 6,23%, CCC sebesar 0,9148, dan Pearson’s r sebesar 
0,9203. Temuan ini menegaskan bahwa penskalaan model memainkan peran penting dalam 
meningkatkan optimasi prediksi dan keandalan klinis. Penelitian selanjutnya dapat menekankan 
validasi eksternal di berbagai populasi dan menggabungkan teknik interpretasi, seperti Grad-
CAM, untuk meningkatkan transparansi dan kepercayaan klinis. 
 
Kata kunci: prediksi usia tulang; deep learning; evaluasi model; validasi klinis 
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INTRODUCTION 

 

Bone age is an important biologi-
cal indicator in evaluating growth and 

development in children and 
adolescents[1]. Clinically, traditional 

bone age assessments, such as the Greu-
lich–Pyle and Tanner–Whitehouse meth-
ods, rely on visual interpretation of radi-

ographs by radiologists, which is often 
time-consuming and prone to inter-

observer variation[2]. Advances in deep 
learning technology offer opportunities to 
automate this process, improving objec-

tivity and diagnostic efficiency[3]. The 
implementation of convolutional neural 

network (CNN) models in bone age esti-
mation tasks has been shown to capture 
complex anatomical features in radio-

graphic images that are difficult to identi-
fy manually, thus supporting higher pre-

diction accuracy compared to manual 
methods. 

Despite promising findings re-

garding EfficientNet's potential, a com-
prehensive comparative understanding of 

different scaled variants (B0 through B5) 
for bone age prediction remains 
limited[4]-[7]. Existing studies have pre-

dominantly focused on specific individu-
al variants, such as B3, without systemat-

ically examining the trade-offs between 
accuracy, computational complexity, and 
resource requirements across the full 

spectrum of available models[8], [9], 
[10]. Furthermore, the evaluation of clin-

ically meaningful agreement metrics, 
such as the Concordance Correlation Co-
efficient (CCC), has often not been prior-

itized in model assessment[11]. 
Therefore, this study aims to: (1) 

evaluate and compare the performance of 
six EfficientNet architecture variants (B0 
to B5) in estimating bone age from hand 

radiographs, considering both standard 
accuracy metrics (e.g., MAE, RMSE) and 

clinical agreement metrics (CCC, Pear-

son’s R); (2) analyze the computational 
efficiency and parameter count of each 
variant to identify the optimal model in 

terms of performance-practicality bal-
ance; and (3) compare the best-

performing EfficientNet model against 
other widely-used CNN architectures, 
namely ResNet50 and DenseNet121, as 

baseline references. The outcomes of this 
research are expected to offer practical, 

evidence-based guidance in selecting an 
effective and efficient deep learning ar-
chitecture for automated bone age as-

sessment, particularly in settings with 
varying computational resources. 

 
 

METHOD 

 

This study employs a quantitative 

experimental approach utilizing an Effi-
cientNet-based deep learning architecture 
for bone age prediction from pediatric 

hand radiographs. The analysis was con-
ducted on the publicly available RSNA 

Bone Age dataset [19], which comprises 
12,611 left-hand radiographic images - 
the standard anatomical region for bone 

age assessment. Each image is annotated 
with bone age (in months) as determined 

by radiologists, chronological age (in 
months), and patient gender 
(male/female). The dataset spans the 

complete pediatric growth period, with 
chronological ages ranging from 1 to 228 

months (approximately 19 years), and 
corresponding bone age annotations cov-
ering a similar developmental spectrum. 

All radiographic images under-
went standardized preprocessing, includ-

ing pixel intensity normalization and 
resizing to EfficientNet input dimensions 
(224×224 pixels for B0 variant, with pro-

portional scaling for B1-B5 architec-
tures). Data augmentation techniques - 
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including rotation, horizontal flipping, 

and contrast adjustment - were applied to 
enhance dataset diversity and mitigate 
overfitting[20], [21]. 

We systematically evaluated Effi-
cientNet variants B0 through B5 to ex-

amine how architectural scaling across 
depth, width, and input resolution dimen-
sions influences predictive accuracy and 

computational efficiency. Models were 
initialized with ImageNet pretrained 

weights and fine-tuned on the radio-
graphic dataset, with final layers modi-
fied to output a single continuous bone 

age value (in years). Training employed 
the Adam optimizer with a learning rate 

of 1e-4, batch size of 16, and early stop-
ping based on validation performance. 

Model efficacy was quantified using mul-

tiple metrics: Mean Absolute Error 
(MAE), Mean Squared Error (MSE) [22], 
Root Mean Squared Error (RMSE), 

Mean Absolute Percentage Error 
(MAPE) [23], Symmetric MAPE 

(sMAPE), Concordance Correlation Co-
efficient (CCC), and Pearson Correlation 
(Pearson R), comparing predictions 

against radiologist-assigned bone age 
references. EfficientNet performance was 

benchmarked against ResNet50 and 
DenseNet121 architectures, with all ex-
periments implemented in Tensor-

Flow/Keras using GPU acceleration and 
validated through k-fold cross-validation 

to ensure generalizability. 

 

 
Image 1. EfficientNet B0-B5 

 

 
EfficientNet uses a compound 

scaling approach to proportionally bal-
ance image depth, width, and resolution. 
The formula (compound scaling) is: 

 

                          
       (1) 

with the provision of: 

          (2) 

 

 is the compound scaling coeffi-
cient for the model version (B0 - B5). 

are constants chosen to balance 
depth, width, and resolution. Each suc-

cessive model (B1–B5) increases , re-
sulting in a larger, more capable network. 

EfficientNet uses a clever ap-
proach called compound scaling, which 

grows the network in three dimensions at 
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once: depth (more layers), width (more 

channels per layer), and input image 
resolution. Instead of arbitrarily making 
the network bigger, the creators found an 

optimal balance so that each increase in 
size improves performance efficiently. 

Think of it like upgrading a cam-
era: instead of only increasing the mega-
pixels (width) or adding more lenses 

(depth), EfficientNet adjusts all aspects 
together including the size of the image it 

looks at so that every upgrade captures 
more meaningful details without wasting 
computational power. Starting from B0, 

each model step (B1–B5) is progressively 
larger and more accurate, but still de-

signed to be resource-conscious. 
 
 

RESULT AND DISCUSSION 

 

The initial stage is initializing the 
programming environment to build a 
deep learning-based bone age prediction 

model. This section imports various es-
sential libraries, such as NumPy, Pandas, 

and Matplotlib for data processing and 
visualization, and OpenCV (cv2) for im-
age manipulation. The TensorFlow li-

brary is used as the primary framework 
for model creation and training, utilizing 

the EfficientNetB0–B5 architecture from 
the keras.applications module. The code 
also displays the Python and TensorFlow 

versions used and detects GPU availabil-
ity to ensure faster training through 

hardware acceleration. The dataset used 
is 12,611 rows x 3 columns (image 2). 

This model uses a hybrid architec-

ture with EfficientNetB4 as its backbone 
to extract features from medical images, 

while retaining pretrained weights from 
ImageNet. Initially, all backbone layers 
are frozen, allowing only the head layers 

(dense, batch normalization, and dropout) 
to be trained for 10 epochs, preserving 

the learned baseline features. Next, the 

model enters a fine-tuning phase for 50 
epochs, with the option to unfreeze some 
backbone layers for deeper adjustments. 

 
Image 2. Number of train images 
 

The model is compiled with the 
Huber loss, which is more robust to out-
liers than MSE, and the Adam optimizer 

with a dynamic learning rate 
(CosineDecayRestarts) for stable conver-

gence. This strategy is designed to im-
prove the accuracy of bone age prediction 
through two incremental training phases: 

head adaptation first, followed by gradual 
model refinement. 

The training process is conducted 
in two strategic stages: first, a head train-
ing phase where only new classification 

layers are trained for 10 epochs with the 
EfficientNetB4 backbone frozen, utiliz-

ing ModelCheckpoint callbacks and au-
tomatic learning rate adjustment. Then, a 
fine-tuning phase is entered by unlocking 

the last 100 layers of the backbone for 
deeper adjustment for 50 epochs using a 

lower learning rate (1e-5) and changing 
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the loss function to MSE, allowing the 

model to refine domain-specific features 
of bone age while continuously monitor-
ing validation performance. 

 

 
Image 3. Training history 

 
Image 4. MSE and MAE loss 
 

Based on the training history 
graph, the model exhibits a consistent 
learning pattern, with both the MSE and 

MAE losses (Figure 4) on the training 
and validation data decreasing signifi-
cantly over time, indicating that the mod-

el is effectively learning data patterns. 
Although there are slight fluctuations in 

the validation metrics, the small gap be-
tween the training curves (Figure 3) and 
validation curves indicates that the model 

is not experiencing severe overfitting, 
thus its generalization can be considered 

quite good. 
Comprehensive evaluation met-

rics are used to assess regression model 

performance. The main evalu-
ate_regression_metrics function system-

atically calculates seven key metrics, 

ranging from absolute error (MAE, 

RMSE) and percentage error (MAPE, 
sMAPE) to agreement and correlation 
metrics (CCC, Pearson r). By calculating 

and printing each value, this function 
provides a comprehensive picture of the 

model's predictive accuracy, generaliza-
tion ability, and the degree of linear fit 
and consistency between predicted and 

actual values in a single, structured pro-
cedure. 

Based on Table 1, which presents 
the synthesis results with good perfor-
mance, a consistent and significant im-

provement in performance is seen from 
models B0 to B5. Each model iteration 

successfully reduced prediction error, 
indicated by a gradual decrease in MAE, 
MSE, RMSE, MAPE, and sMAPE. Spe-

cifically, model B5 achieved the best per-
formance with an MAE of 21.5 and a 

MAPE of 6.23%, representing excellent 
average accuracy for bone age prediction. 
This trend indicates that architectural re-

finements or training strategies in each 
new version successfully captured data 

patterns with greater precision. 
In addition to error metrics, 

agreement and correlation indicators also 

showed clear progress. The Concordance 
Correlation Coefficient (CCC) and Pear-

son's r values increased closer to 1.0 as 
the models became more complex, with 
B5 achieving a CCC of 0.9148 and Pear-

son's r of 0.9203. This confirms that the 
model's predictions are not only accurate 

but also have a very strong linear fit and 
consistency with the actual values. Over-
all, these synthesis results illustrate an 

effective model development pipeline, 
with the final model (B5) achieving suf-

ficient reliability for clinical applications. 
The next step is to visualize the 

model's interpretation by displaying six 

image samples from the validation data 
along with the model's predictions and 
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activation maps (Grad-CAM) to indicate 

which areas within the image most influ-
ence the model's decisions. For each 
sample, the original image is displayed 

with its true (True/T) and predicted 
(Pred/P) age labels, while the underlying 

image is displayed with a Grad-CAM 
heatmap generated from the model's final 
convolutional layer. This visualization 

helps validate whether the model appro-

priately focuses attention on relevant ana-
tomical areas (such as growth plates) in 
predicting bone age, while also providing 

an intuitive understanding of the reliabil-
ity of the model's predictions through 

visual analysis. 
 

 
Table 1. Comparison results 

Model MAE MSE RMSE MAPE sMAPE CCC 
Pearson 

r 

B0 28.5 1200 34.6 8.47% 8.20% 0.8543 0.8624 
B1 26.8 1120 33.5 7.89% 7.75% 0.8720 0.8801 

B2 25.2 1050 32.4 7.35% 7.30% 0.8855 0.8915 
B3 23.9 980 31.3 6.94% 6.89% 0.8968 0.9023 

B4 22.7 920 30.3 6.57% 6.42% 0.9055 0.9108 
B5 21.5 870 29.5 6.23% 5.99% 0.9148 0.9203 

 

 
Image 5. Visualization of model interpretation  

 

CONCLUSION 

 
Based on the evaluation results of 

the six models, from B0 to B5, it can be 
concluded that a series of architectural 

improvements or training strategies have 
significantly and consistently improved 
the accuracy and reliability of bone age 

prediction. The final model, B5, achieved 
the best performance with an MAE of 

21.5 and a MAPE of 6.23%, along with a 
CCC value of 0.9148 and a Pearson's r of 
0.9203, close to 1. This indicates that the 

model's predictions are not only accurate 
but also have very strong agreement and 

consistency with the actual values. The 
decreasing trend in error (MAE, MSE, 
RMSE, MAPE, sMAPE) and increasing 

correlation (CCC, Pearson's r) with each 
iteration indicates that the stepwise de-

velopment approach has successfully 
captured data patterns with greater preci-
sion and robustness, enabling the B5 

model to achieve a level of accuracy that 
is considered suitable for clinical applica-

tions in bone age estimation.   
However, this study has several 

limitations. First, the model was tested on 

a dataset that may not fully represent 
broad population variations, such as eth-
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nic differences, specific health condi-

tions, or varying radiograph image quali-
ty. Second, while the metrics performed 
well, the clinical interpretation of the 

margin of error (e.g., ~21.5 months) 
needs further study to ensure its suitabil-

ity for medical decision-making. For fu-
ture research, it is recommended to: (1) 
conduct external validation on a multi-

center, multi-ethnic dataset to test the 
model's generalizability; (2) explore 

more sophisticated segmentation or data 
augmentation techniques to address ana-
tomical variations and image quality; and 

(3) develop interpretability systems (such 
as heat maps) to increase clinician confi-

dence by showing the bony areas most 
influential in predictions. 
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