Prediksi Aktivitas Tanpa Masker Dengan Kombinasi Metode Single Exponential Smoothing Dan Fuzzy time series

Edi Suranta Sembiring, Zulfahmi Syahputra

Abstract


Abstract: The government has continued to work hard in efforts to prevent the COVID-19 virus with complete vaccines for the community due to the importance of complete vaccination as an aspect of consideration for the implementation of the policy of doing activities without masks. Currently, only 15.91 percent of Indonesia's total population is fully vaccinated. Still a long way from the published figure of 50% of the total population. The goal of this study is to model and predict when the Indonesian government will be able to implement policies that will allow its citizens to move around without wearing masks, assuming that at least 50% of the Indonesian population has received the full dose of the vaccine. As a result, we require calculation guidelines to assist us.

           
Keywords: Mask; SES; FTS.

 

 

Abstrak: Pemerintah terus bekerja keras dalam upaya pencegahan virus COVID-19 dengan vaksin lengkap bagi masyarakat mengingat pentingnya vaksinasi lengkap sebagai aspek pertimbangan implementasi kebijakan beraktivitas tanpa masker. Saat ini, hanya 15,91 persen dari total penduduk Indonesia yang divaksinasi lengkap. Masih jauh dari angka yang dipublikasikan 50% dari total populasi. Tujuan dari penelitian ini adalah untuk memodelkan dan memprediksi kapan pemerintah Indonesia akan dapat menerapkan kebijakan yang memungkinkan warganya untuk bergerak tanpa memakai masker, dengan asumsi bahwa setidaknya 50% penduduk Indonesia telah menerima vaksin dosis penuh. Akibatnya, kami memerlukan pedoman perhitungan untuk membantu kami.

 

Kata kunci: Masker; SES; FTS


Full Text:

PDF

References


R. a F. Saputri, “Penerapan Metode Fuzzy Time Series Untuk Prediksi Penjualan Berbasis Web Pada Toko Grosir 3 Roda Sengkaling,” JATI (Jurnal Mhs. Tek. Inform., vol. 3, no. 1, pp. 290–297, 2019, [Online]. Available: https://ejournal.itn.ac.id/index.php/jati/article/download/1391/1247

H. A. Cahya, R. Wulanningrum, and D. P. Pamungkas, “Sistem Prediksi Fuzzy Time Series Dan Perangkingan Weighted Product Pada Penjualan Es Buah,” Klik - Kumpul. J. Ilmu Komput., vol. 7, no. 2, p. 103, 2020, doi: 10.20527/klik.v7i2.313.

Z. Syahputra and S. E. Smoothing, “IMPLEMENTASI KOMBINASI METODE SINGLE EXPONENTIAL SMOOTHING DAN FUZZY TIME SERIES PADA STUDI KASUS MEMPREDIKSI KAPAN PEMERINTAH INDONESIA MENGIZINKAN WARGANYA BERAKTIVITAS,” vol. 2, no. 2, pp. 72–78, 2021.

H. T. Jasim and A. G. J. Salim, “Applications and Applied Mathematics : An International A Novel Algorithm to Forecast Enrollment Based on Fuzzy Time Series A Novel Algorithm to Forecast Enrollment Based on Fuzzy Time Series,” vol. 7, no. 1, 2012.

N. Komang, S. Julyantari, and I. K. D. Suryawan, “Data Mining Prestasi Akademik Dengan Naive Bayes Berdasarkan Attribut Importance ( AI ),” J. Sist. Dan Inform., pp. 75–85, 2013.

C. H. Cheng, T. L. Chen, H. J. Teoh, and C. H. Chiang, “Fuzzy time-series based on adaptive expectation model for TAIEX forecasting,” Expert Syst. Appl., vol. 34, no. 2, pp. 1126–1132, 2008, doi: 10.1016/j.eswa.2006.12.021.




DOI: https://doi.org/10.33330/j-com.v2i1.1588

Article Metrics

Abstract view : 345 times
PDF - 203 times

Refbacks

  • There are currently no refbacks.


Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.