E-COMMERCE CLUSTERING ANALYSIS BASED ON LARGEST VISITORS

Nurwati Nurwati

Abstract


E-Commerce is an Electric Commerce which is very much and popularly used by all people. The increase in buying and selling online, making the number of e-commerce in Indonesia and the great benefits of e-commerce has made researchers conduct e-commerce cluster analysis so that online shop owners can join the most clusters so that they can increase their business. E-commerce clustering analysis based on the number of visitors visiting the e-commerce site or website. Clustering is used to produce the Most, Most, and Enough E-commerce groups. From the results of the clustering, it was found that the e-commerce names Tokopedia, Bukalapak and Shopee were the clusters with the most visitors. Lazada and Blibli are clusters of Many Visitors and JD Id, Orami, Sociolla, zalora, bhinneka, elevenia, blanja, laku6, jakarta Notebook and Ralali are included in the Quite Many Visitors cluster. Clustering data is based on the number of visitors starting in Quartiles 1-2019, Quartiles 2-2019, Quartiles 3-2019, Quartiles 4-2019 and Quartiles 1-2020.

 

Keywords: Clastering, E-Commerce, Biggest Visitor


Full Text:

PDF

References


D. R. Ningrat, D. A. I. Maruddani, and T. Wuryandari, “Analisis Cluster Dengan Algoritma K-Means Dan Fuzzy C-Means Clustering Untuk Pengelompokan Data Obligasi Korporasi,” None, vol. 5, no. 4, pp. 641–650, 2016.

J. Matematika, F. Matematika, D. A. N. Ilmu, P. Alam, and U. N. Semarang, Perbandingan Kinerja Metode Single Linkage , Metode Complete Linkage Dan Metode K-Means Dalam Analisis Cluster. 2011.

F. A. Dewa and M. T. Jatipaningrum, “SEGMENTASI E-COMMERCE DENGAN CLUSTER K-MEANS DAN FUZZY C-MEANS ( Studi Kasus : Media Sosial di Indonesia yang diunduh di Play Store ),” vol. 4, no. 1, pp. 53–67, 2019.

R. Hastanti, Puji, B. eka purnama, and I. ully wardati, “Sistem Penjualan Berbasis Web (E-Commerce) Pada Tata Distro Kabupaten Pacitan,” J. Bianglala Inform., vol. 3, no. 2, pp. 1–9, 2015, doi: 10.1007/s13226-018-0284-5.

W. Fitri and P. Nugroho, “Peningkatan Daya Saing Bisnis ‘ Batik Kahuripan ,’” Semin. Ris. Unggulan Nas. Inform. dan Komput. FTI UNSA, vol. 2, no. 1, pp. 25–32, 2013.

K. Fatmawati and A. P. Windarto, “Data Mining: Penerapan Rapidminer Dengan K-Means Cluster Pada Daerah Terjangkit Demam Berdarah Dengue (Dbd) Berdasarkan Provinsi,” Comput. Eng. Sci. Syst. J., vol. 3, no. 2, p. 173, 2018, doi: 10.24114/cess.v3i2.9661.

V. Novita Sari, Y. Yupianti, and D. Maharani, “Penerapan Metode K-Means Clustering Dalam Menentukan Predikat Kelulusan Mahasiswa Untuk Menganalisa Kualitas Lulusan,” Jurteksi, vol. 4, no. 2, pp. 133–140, 2018, doi: 10.33330/jurteksi.v4i2.53.

B. Poerwanto and R. Y. Fa’rifah, “Analisis Cluster K-Means dalam Pengelompokan Kemampuan Mahasiswa,” J. Sci. Pinisi, vol. 2, no. 2, pp. 92–96, 2016.

E. Irfiani and S. S. Rani, “Algoritma K-Means Clustering untuk Menentukan Nilai Gizi Balita,” J. Sist. dan Teknol. Inf., vol. 6, no. 4, p. 161, 2018, doi: 10.26418/justin.v6i4.29024.

J. Xu and K. Lange, “Power k-means clustering,” 36th Int. Conf. Mach. Learn. ICML 2019, vol. 2019-June, pp. 11977–11991, 2019.




DOI: https://doi.org/10.33330/icossit.v1i1.779

Article Metrics

Abstract view : 293 times
PDF - 167 times

Refbacks

  • There are currently no refbacks.