E-COMMERCE CLUSTERING ANALYSIS BASED ON LARGEST VISITORS

Nurwati Nurwati

Abstract


Food is anything that comes from biological sources and water, whether it is processed or not processed, which is intended as food or drink for human consumers, including food additives and other materials used in the process of preparing, processing and making food or drinks. IRT (Home Industry) is a business unit or company on a small scale that is engaged in certain industries. In this study, there were 10 alternatives of food consisting of dumplings, potato chips, wet cakes, serundeng, mussels, powdered bandrek, corn cheese chips, onion cakes, sesame cakes, shrimp paste, shrimp paste. The process of granting licenses for home industry food certificates still has constraints including constraints to choose what criteria will be used as well as elements in the assessment so it is difficult to get a decision. The purpose of this study was to build a decision support system using themethod Weight Product. From the results of the study, applications that have been built can help the health department to make decisions in terms of granting a home industry food certificate with the highest value of 0.1290.

Keywords: decision support system; household food certificate; method weight product


Full Text:

PDF

References


D. R. Ningrat, D. A. I. Maruddani, and T. Wuryandari, “Analisis Cluster Dengan Algoritma K-Means Dan Fuzzy C-Means Clustering Untuk Pengelompokan Data Obligasi Korporasi,” None, vol. 5, no. 4, pp. 641–650, 2016.

J. Matematika, F. Matematika, D. A. N. Ilmu, P. Alam, and U. N. Semarang, Perbandingan Kinerja Metode Single Linkage , Metode Complete Linkage Dan Metode K-Means Dalam Analisis Cluster. 2011.

F. A. Dewa and M. T. Jatipaningrum, “SEGMENTASI E-COMMERCE DENGAN CLUSTER K-MEANS DAN FUZZY C-MEANS ( Studi Kasus : Media Sosial di Indonesia yang diunduh di Play Store ),” vol. 4, no. 1, pp. 53–67, 2019.

R. Hastanti, Puji, B. eka purnama, and I. ully wardati, “Sistem Penjualan Berbasis Web (E-Commerce) Pada Tata Distro Kabupaten Pacitan,” J. Bianglala Inform., vol. 3, no. 2, pp. 1–9, 2015, doi: 10.1007/s13226-018-0284-5.

W. Fitri and P. Nugroho, “Peningkatan Daya Saing Bisnis ‘ Batik Kahuripan ,’” Semin. Ris. Unggulan Nas. Inform. dan Komput. FTI UNSA, vol. 2, no. 1, pp. 25–32, 2013.

K. Fatmawati and A. P. Windarto, “Data Mining: Penerapan Rapidminer Dengan K-Means Cluster Pada Daerah Terjangkit Demam Berdarah Dengue (Dbd) Berdasarkan Provinsi,” Comput. Eng. Sci. Syst. J., vol. 3, no. 2, p. 173, 2018, doi: 10.24114/cess.v3i2.9661.

V. Novita Sari, Y. Yupianti, and D. Maharani, “Penerapan Metode K-Means Clustering Dalam Menentukan Predikat Kelulusan Mahasiswa Untuk Menganalisa Kualitas Lulusan,” Jurteksi, vol. 4, no. 2, pp. 133–140, 2018, doi: 10.33330/jurteksi.v4i2.53.

B. Poerwanto and R. Y. Fa’rifah, “Analisis Cluster K-Means dalam Pengelompokan Kemampuan Mahasiswa,” J. Sci. Pinisi, vol. 2, no. 2, pp. 92–96, 2016.

E. Irfiani and S. S. Rani, “Algoritma K-Means Clustering untuk Menentukan Nilai Gizi Balita,” J. Sist. dan Teknol. Inf., vol. 6, no. 4, p. 161, 2018, doi: 10.26418/justin.v6i4.29024.

J. Xu and K. Lange, “Power k-means clustering,” 36th Int. Conf. Mach. Learn. ICML 2019, vol. 2019-June, pp. 11977–11991, 2019.




DOI: https://doi.org/10.33330/icossit.v1i1.779

Article Metrics

Abstract view : 16 times
PDF - 12 times

Refbacks

  • There are currently no refbacks.